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1 Let k > 2 be an integer.

(a) Explain what is meant by a normalised eigenform in Sk(SL2(Z)). Show that if f is a
normalised eigenform and λ(m) is the Tm-eigenvalue of f , then we have{

λ(mn) = λ(m)λ(n) for (m,n) coprime
λ(pe+2) = λ(p)λ(pe+1)− pk−1λ(pe) for p prime, e > 0.

[You should give proofs of any statements you use concerning Hecke operators.]

(b) Show that if n is prime, then the Tn-eigenvalue λ(n) of f is equal to an(f), the
coefficient of qn in the q-expansion of f .

(c) By considering the values λ(pe) for p a fixed prime, or otherwise, show that there
exist infinitely many n such that λ(n) > 1

2n(k−1)/2. [You may assume the polynomial
X2 − λ(p)X + pk−1 has distinct roots for all p.]

2 Let n > 0 be an integer, Γ a finite index subgroup of SL2(Z), and f ∈ A2n(Γ).
Show that the meromorphic differential λ(f) = f · (dz)n ∈ Ωn(H) is Γ-invariant.

Construct a meromorphic differential ω(f) ∈ Ωn(X(Γ)) such that π∗
Γ[ω(f)] = λ(f),

and derive formulae relating the orders of vanishing of f and ω(f).

Let k and N be positive integers and χ a Dirichlet character modulo N . Suppose
there exists some nonzero f ∈ Ak(Γ1(N), χ). Construct a divisor D(f) on X0(N) for
which

Sk(Γ1(N), χ) = {fφ : φ ∈ L(D(f))}.

By considering D(fgt) where g is the element of A2(Γ0(N)) corresponding to a
nonzero meromorphic 1-differential, or otherwise, show that there is some t such that
Sk+2t(Γ1(N), χ) 6= 0. Show moreover that

dim Sk+2t(Γ1(N), χ) =
dt

6
+ A(t)

where d = [SL2(Z) : Γ0(N)] and A(t) depends only on t mod 6.
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(a) Show that the group SL2(Z) is generated by the elements
(

1 1
0 1

)
and

(
0 −1
1 0

)
.

Describe the standard fundamental domain D for SL2(Z) and show that every SL2(Z)-
orbit in H contains a point of D.

(b) Show that every modular form of level SL2(Z) may be written as a polynomial in E4

and E6. Show that if N is an integer and f =
∑

n>0 anqn ∈ Mk(SL2(Z)), and an ∈ Z
for 0 6 n 6 k+1

12 , then an ∈ Z for all n. [You may assume that the unique normalised
cusp form ∆ ∈ S12(SL2(Z)) has integral coefficients.]

(c) Let λ be an element of R with 0 < λ < 1. The subgroup Γλ ⊆ SL2(R) is generated by
the matrices

A =
(

0 −1
1 0

)
and B =

(
1 2λ
0 1

)
.

By considering the stabiliser of the point z = −λ + i
√

1− λ2, or otherwise, show that
if Γλ is discrete, we must have λ = cos πy for some y ∈ Q.
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(a) Let N > 1 be an integer and ℓ a prime not dividing N . By applying the matrix
identity (

ℓ 0
0 1

)
=

(
1 n
N mℓ

)−1 (
1 0
0 ℓ

)(
ℓ n
N m

)
for suitable m,n, or otherwise, show that in R(Γ1(N)) we have wNTℓw

−1
N = 〈ℓ−1〉Tℓ,

and Tℓ is a normal operator on Sk(Γ1(N)) with respect to the Petersson product.

(b) Show that Sk(Γ1(N))new has a basis of eigenforms for all the Hecke operators Tℓ (ℓ ∤ N)
and Up (p | N), and{

f(tz)
∣∣∣∣ f ∈ Sk(Γ1(M))new primitive eigenform

M | N, t | N
M

}
is a basis for Sk(Γ1(N)). Show that if f ∈ Sk(Γ0(N))new is a primitive eigenform,
wNf = ±Nk−1f . [You may assume that the Hecke operators preserve the new
subspace.]

(c) Let f be a primitive eigenform in Sk(Γ0(M))new, p a prime dividing M , and N = Mpr

for some integer r > 1. Give matrices for the action of Up and wN on the subspace
of Sk(Γ0(N))old corresponding to f , and hence show that this space is a simple Hecke
module, i.e. it has no nonzero proper subspace that is invariant under R(Γ0(N)).
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5 Write an essay on the theory of modular symbols, explaining how they may be
used to prove that the matrices of Hecke operators on weight 2 cusp forms are rational
and algorithmically computable.

Illustrate the theory by reference to the (unique) subgroup Γ ⊆ SL2(Z) with the
property that SL2(Z) =

⊔7
i=1 Γri, for some elements r1, . . . , r7, with Γr1 = Γ, and right

multiplication by the elements S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
induce the permuta-

tions (1, 7, 3, 6)(2, 5, 4) and (1, 7)(2, 6)(3, 4) of the cosets {Γri}. What is the rank of
H1(X(Γ), Z, {cusps}) in this case?
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