UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Friday, 5 June, 2009 9:00 am to 12:00 pm

PAPER 27

MODULAR FORMS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

- 1 Let $k \ge 2$ be an integer.
- (a) Explain what is meant by a normalised eigenform in $S_k(\mathrm{SL}_2(\mathbb{Z}))$. Show that if f is a normalised eigenform and $\lambda(m)$ is the T_m -eigenvalue of f, then we have

$$\begin{cases} \lambda(mn) = \lambda(m)\lambda(n) & \text{for } (m,n) \text{ coprime} \\ \lambda(p^{e+2}) = \lambda(p)\lambda(p^{e+1}) - p^{k-1}\lambda(p^e) & \text{for } p \text{ prime}, e \ge 0. \end{cases}$$

[You should give proofs of any statements you use concerning Hecke operators.]

- (b) Show that if n is prime, then the T_n -eigenvalue $\lambda(n)$ of f is equal to $a_n(f)$, the coefficient of q^n in the q-expansion of f.
- (c) By considering the values $\lambda(p^e)$ for p a fixed prime, or otherwise, show that there exist infinitely many n such that $\lambda(n) \ge \frac{1}{2}n^{(k-1)/2}$. [You may assume the polynomial $X^2 \lambda(p)X + p^{k-1}$ has distinct roots for all p.]

2 Let $n \ge 0$ be an integer, Γ a finite index subgroup of $\mathrm{SL}_2(\mathbb{Z})$, and $f \in \mathcal{A}_{2n}(\Gamma)$. Show that the meromorphic differential $\lambda(f) = f \cdot (\mathrm{d}z)^n \in \Omega^n(\mathcal{H})$ is Γ -invariant.

Construct a meromorphic differential $\omega(f) \in \Omega^n(X(\Gamma))$ such that $\pi^*_{\Gamma}[\omega(f)] = \lambda(f)$, and derive formulae relating the orders of vanishing of f and $\omega(f)$.

Let k and N be positive integers and χ a Dirichlet character modulo N. Suppose there exists some nonzero $f \in \mathcal{A}_k(\Gamma_1(N), \chi)$. Construct a divisor D(f) on $X_0(N)$ for which

$$S_k(\Gamma_1(N), \chi) = \{ f\phi : \phi \in \mathcal{L}(D(f)) \}.$$

By considering $D(fg^t)$ where g is the element of $\mathcal{A}_2(\Gamma_0(N))$ corresponding to a nonzero meromorphic 1-differential, or otherwise, show that there is some t such that $S_{k+2t}(\Gamma_1(N), \chi) \neq 0$. Show moreover that

$$\dim S_{k+2t}(\Gamma_1(N),\chi) = \frac{dt}{6} + A(t)$$

where $d = [SL_2(\mathbb{Z}) : \Gamma_0(N)]$ and A(t) depends only on $t \mod 6$.

- 3
- (a) Show that the group $\operatorname{SL}_2(\mathbb{Z})$ is generated by the elements $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Describe the standard fundamental domain \mathcal{D} for $\operatorname{SL}_2(\mathbb{Z})$ and show that every $\operatorname{SL}_2(\mathbb{Z})$ -orbit in \mathcal{H} contains a point of \mathcal{D} .

3

- (b) Show that every modular form of level $\operatorname{SL}_2(\mathbb{Z})$ may be written as a polynomial in E_4 and E_6 . Show that if N is an integer and $f = \sum_{n \ge 0} a_n q^n \in M_k(\operatorname{SL}_2(\mathbb{Z}))$, and $a_n \in \mathbb{Z}$ for $0 \le n \le \frac{k+1}{12}$, then $a_n \in \mathbb{Z}$ for all n. [You may assume that the unique normalised cusp form $\Delta \in S_{12}(\operatorname{SL}_2(\mathbb{Z}))$ has integral coefficients.]
- (c) Let λ be an element of \mathbb{R} with $0 < \lambda < 1$. The subgroup $\Gamma_{\lambda} \subseteq SL_2(\mathbb{R})$ is generated by the matrices

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix}.$$

By considering the stabiliser of the point $z = -\lambda + i\sqrt{1 - \lambda^2}$, or otherwise, show that if Γ_{λ} is discrete, we must have $\lambda = \cos \pi y$ for some $y \in \mathbb{Q}$.

$\mathbf{4}$

(a) Let $N \ge 1$ be an integer and ℓ a prime not dividing N. By applying the matrix identity

$$\begin{pmatrix} \ell & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n \\ N & m\ell \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} \begin{pmatrix} \ell & n \\ N & m \end{pmatrix}$$

for suitable m, n, or otherwise, show that in $\mathcal{R}(\Gamma_1(N))$ we have $w_N T_\ell w_N^{-1} = \langle \ell^{-1} \rangle T_\ell$, and T_ℓ is a normal operator on $S_k(\Gamma_1(N))$ with respect to the Petersson product.

(b) Show that $S_k(\Gamma_1(N))^{\text{new}}$ has a basis of eigenforms for all the Hecke operators T_ℓ ($\ell \nmid N$) and U_p $(p \mid N)$, and

$$\left\{ f(tz) \mid f \in S_k(\Gamma_1(M))^{\text{new}} \text{ primitive eigenform} \\ M \mid N, t \mid \frac{N}{M} \right\}$$

is a basis for $S_k(\Gamma_1(N))$. Show that if $f \in S_k(\Gamma_0(N))^{\text{new}}$ is a primitive eigenform, $w_N f = \pm N^{k-1} f$. [You may assume that the Hecke operators preserve the new subspace.]

(c) Let f be a primitive eigenform in $S_k(\Gamma_0(M))^{\text{new}}$, p a prime dividing M, and $N = Mp^r$ for some integer $r \ge 1$. Give matrices for the action of U_p and w_N on the subspace of $S_k(\Gamma_0(N))^{\text{old}}$ corresponding to f, and hence show that this space is a *simple Hecke* module, i.e. it has no nonzero proper subspace that is invariant under $\mathcal{R}(\Gamma_0(N))$.

UNIVERSITY OF

4

5 Write an essay on the theory of modular symbols, explaining how they may be used to prove that the matrices of Hecke operators on weight 2 cusp forms are rational and algorithmically computable.

Illustrate the theory by reference to the (unique) subgroup $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$ with the property that $\mathrm{SL}_2(\mathbb{Z}) = \bigsqcup_{i=1}^7 \Gamma r_i$, for some elements r_1, \ldots, r_7 , with $\Gamma r_1 = \Gamma$, and right multiplication by the elements $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ induce the permutations (1, 7, 3, 6)(2, 5, 4) and (1, 7)(2, 6)(3, 4) of the cosets $\{\Gamma r_i\}$. What is the rank of $H_1(X(\Gamma), \mathbb{Z}, \{\mathrm{cusps}\})$ in this case?

END OF PAPER