UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2009 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 26

ELLIPTIC CURVES

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 (a) Describe the group law on an elliptic curve in terms of the chord and tangent process. Prove that the group law is associative.

 $\mathbf{2}$

(b) Let E be an elliptic curve of the form

$$y^2 + axy + by = x^3 + bx^2$$

where the discriminant $\Delta = -b^3(16b^2 + (8a^2 - 36a + 27)b + a^4 - a^3)$ is non-zero. Let P be the point (x, y) = (0, 0). Compute the points $\pm 2P$ and $\pm 3P$. Deduce that $5P = 0_E$ if and only if a = b + 1.

(c) Give examples of elliptic curves over \mathbb{Q} with rational points of orders 4, 5 and 6.

2 Let E_D be the elliptic curve over \mathbb{Q} given by the Weierstrass equation

$$y^2 = x^3 - D^2 x$$

with discriminant $\Delta = 64D^6$, where D is an odd integer.

(a) Determine the set of primes of bad reduction for E_D .

(b) For p a prime of good reduction we write $\#\widetilde{E}_D(\mathbb{F}_p) = 1 + p - a_p$. Show that $a_p = 0$ if and only if $p \equiv 3 \pmod{4}$. State Hasse's bound for a_p .

(c) Prove that $E_5(\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}$.

(d) Use the identity $(x^2 - D^2)^2 + (2xD)^2 = (x^2 + D^2)^2$ to show there are infinitely many right-angled triangles with rational side lengths and area 5.

3 What is a formal group? Write down a condition in terms of the leading coefficient for a homomorphism of formal groups to be an isomorphism.

Let K be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O}_K and maximal ideal $\pi \mathcal{O}_K$. State and prove a theorem classifying formal groups over K. Deduce that if \mathcal{F} is a formal group over \mathcal{O}_K then $\mathcal{F}(\pi \mathcal{O}_K)$ contains a subgroup of finite index isomorphic to \mathcal{O}_K under addition.

4 EITHER

Write an essay on Galois cohomology and its application to the proof of the weak Mordell-Weil theorem.

OR

Write an essay on heights and their application to the proof of the Mordell-Weil theorem.

END OF PAPER