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1 Write an essay on computable functions N¥ — N. You should cover (among other
things) Rice’s theorem and the theorem of Jockusch that there is an infinite recursive parti-
tion of [N]? with no infinite recursive monochromatic set.

2 Explain the device of Rieger-Bernays permutation models, and use it to prove the
independence of the axiom of foundation from ZF. Extend your technique to prove the inde-
pendence of the axiom of choice from ZF minus foundation.

3 Prove Kruskal’s theorem on wellquasiordering of trees and deduce Friedman’s Finite
Form of it.
4 Use Ramsey’s theorem to prove (i) the Ehrenfeucht-Mostowski theorem, and (ii)

the consistency of simple typed set theory with typical ambiguity and urelemente.

5 (a) What is a measurable cardinal? Explain the connection with elementary
embeddings. Why is the canonical embedding into the transitive collapse of the ultrapower
not the identity? What can you say about the first ordinal moved by it?

(b) State and prove the Erdés-Rado theorem on partitions with uncountable monochro-
matic sets. One consequence of this theorem is that a certain increasing function on ordi-
nals is total; give a condition (the tree property) for a supremum of iterates of this function
to be a fixed point for it. Prove that any cardinal with the tree property must be strongly
inaccessible.

6 Give a proof of the Ehrenfeucht-Mostowski theorem using ultraproducts not Ram-
sey’s theorem.

7 Prove the lemma of Frayne’s that elementarily equivalent structures have isomor-
phic ultralimits.
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