UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2009 1:30 pm to 4:30 pm

PAPER 23

CATEGORY THEORY

Attempt no more than **FIVE** questions. There are **EIGHT** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (a) Prove that a category that has finite products and equalisers has all finite limits.
- (b) Prove that a category with pullbacks and a terminal object has binary products and equalisers; hence deduce that it has all finite limits.

2 What does it mean for a functor to *preserve* limits of shape \mathcal{I} ? What does it mean for a functor to *reflect* limits of shape \mathcal{I} ? Show that a full and faithful functor reflects limits.

- (a) Suppose there are given functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$. Show that if GF preserves limits of shape \mathcal{I} and G reflects them, then F preserves limits of shape \mathcal{I} .
- (b) If X is an object of \mathcal{D} , show that the forgetful functor $U_X : \mathcal{D}/X \to \mathcal{D}$ from the slice category reflects pullbacks and preserves equalisers.
- (c) Let C be a category with all finite limits and $F: C \to D$ a pullback-preserving functor. By factorising F as

$$\mathcal{C} \xrightarrow{F} \mathcal{D}/F1 \xrightarrow{U_{F1}} \mathcal{D}$$

where 1 is the terminal object of C and $\hat{F}(A)$ the image under F of the unique morphism $A \to 1$, show that F preserves equalisers. [You may assume that a functor which preserves pullbacks and the terminal object preserves all finite limits.]

3 Let \mathcal{C} be a small category.

- (a) Prove that every $F \in [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is a colimit of representable presheaves.
- (b) Define cartesian closed category, and prove that $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ is cartesian closed. [You may assume that limits and colimits are computed pointwise in a presheaf category.]
- (c) Suppose that \mathcal{C} is a small cartesian closed category. Show that the Yoneda embedding $H_{\bullet}: \mathcal{C} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ preserves exponentials, in the sense that $(H_Z)^{H_Y} \cong H_{(Z^Y)}$.

UNIVERSITY OF CAMBRIDGE

- 4 Let C be a small category.
- (a) Define the Yoneda embedding $H_{\bullet}: \mathcal{C} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$. State the Yoneda Lemma and use it to deduce that H_{\bullet} is full and faithful.

A retract diagram is a pair of maps

$$A \xrightarrow{i} B \xrightarrow{p} A \tag{1}$$

such that $pi = id_A$.

- (b) Show that in a retract diagram like (??), $i: A \to B$ is the equaliser of the maps ip and $id_B: B \to B$.
- (c) Show that if \mathcal{C} has equalisers, then for any B in \mathcal{C} and any retract diagram

$$F \xrightarrow{i} H_B \xrightarrow{p} F$$

in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$, the presheaf F is representable. [You may assume standard results about the Yoneda embedding.]

An object A of a category \mathcal{E} is said to be 0-*presentable* if the functor $\mathcal{E}(A, -): \mathcal{E} \to \mathbf{Set}$ preserves colimits. In elementary terms, this says that any map from A into the vertex of a colimiting cone in \mathcal{E} will factor through one of the colimit injections in an essentially unique way.

- (d) Show that every representable functor in $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is 0-presentable. [You may assume standard results about colimits in presheaf categories.]
- (e) Show that if C has equalisers, then every 0-presentable object of $[C^{op}, \mathbf{Set}]$ is representable. [Hint: express the object in question as a colimit of representables.]

UNIVERSITY OF CAMBRIDGE

- $\mathbf{5}$
- 5 Explain how a poset is realised as a category. What is a functor between posets?
- (a) Let $f: X \to Y$ and $g: Y \to X$ be a pair of functors between posets. Describe in explicit terms what an adjunction $f \dashv g$ is.
- (b) Let $p: A \to B$ be a map of sets and let $p^*: \mathcal{P}B \to \mathcal{P}A$ be the induced map of powersets sending $X \subseteq B$ to $p^*(X) = \{a \in A \mid p(a) \in X\}$. Exhibit left and right adjoints to p^* .
- (c) Fix a non-empty topological space S, and let $\mathcal{O}(S)$ denote the poset of open subsets of S, ordered by inclusion. Let

$$\Delta \colon \mathbf{Set} \to [\mathcal{O}(S)^{\mathrm{op}}, \mathbf{Set}]$$

be the functor assigning to a set the presheaf ΔA with constant value A. Exhibit left and right adjoints to Δ . [In this part you are only expected to define the functors on objects and when you show adjointness you are not expected to carry out any formal checks of naturality.]

6 State and prove the General Adjoint Functor Theorem. (If you wish to appeal to an initial object lemma, you should prove it.)

$\mathbf{7}$

- (a) Define the structure of a monad on a category C, and the category of algebras for a monad.
- (b) Show that any adjunction $F \dashv G \colon \mathcal{D} \to \mathcal{C}$ induces a monad on \mathcal{C} .
- (c) Show that the forgetful functor from the category $\mathcal{C}^{\mathbb{T}}$ of \mathbb{T} -algebras to \mathcal{C} has a left adjoint.

UNIVERSITY OF

- 8 Let \mathbb{T} be a monad on a category \mathcal{C} induced by an adjunction $F \dashv G \colon \mathcal{D} \to \mathcal{C}$.
- (a) Define the comparison functor $K: \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$. [You need not prove that it is well-defined.]

5

- (b) Give, with proof, necessary and sufficient conditions for K to have a left adjoint.
- (c) Give, with proof, necessary and sufficient conditions for the adjunction in part (b) to have an invertible unit.

END OF PAPER