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1

(a) Prove that a category that has finite products and equalisers has all finite limits.

(b) Prove that a category with pullbacks and a terminal object has binary products and
equalisers; hence deduce that it has all finite limits.

2 What does it mean for a functor to preserve limits of shape I? What does it mean
for a functor to reflect limits of shape I? Show that a full and faithful functor reflects
limits.

(a) Suppose there are given functors F : C → D and G : D → E . Show that if GF preserves
limits of shape I and G reflects them, then F preserves limits of shape I.

(b) If X is an object of D, show that the forgetful functor UX : D/X → D from the slice
category reflects pullbacks and preserves equalisers.

(c) Let C be a category with all finite limits and F : C → D a pullback-preserving functor.
By factorising F as

C F̂−→ D/F1 UF1−−→ D
where 1 is the terminal object of C and F̂ (A) the image under F of the unique
morphism A → 1, show that F preserves equalisers. [You may assume that a functor
which preserves pullbacks and the terminal object preserves all finite limits.]

3 Let C be a small category.

(a) Prove that every F ∈ [Cop,Set] is a colimit of representable presheaves.

(b) Define cartesian closed category, and prove that [Cop,Set] is cartesian closed. [You
may assume that limits and colimits are computed pointwise in a presheaf category.]

(c) Suppose that C is a small cartesian closed category. Show that the Yoneda embedding
H• : C → [Cop,Set] preserves exponentials, in the sense that (HZ)HY ∼= H(ZY ).
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4 Let C be a small category.

(a) Define the Yoneda embedding H• : C → [Cop,Set]. State the Yoneda Lemma and use
it to deduce that H• is full and faithful.

A retract diagram is a pair of maps

A
i−−−→ B

p−−−→ A (1)

such that pi = idA.

(b) Show that in a retract diagram like (??), i : A → B is the equaliser of the maps ip
and idB : B → B.

(c) Show that if C has equalisers, then for any B in C and any retract diagram

F
i−−−→ HB

p−−−→ F

in [Cop,Set], the presheaf F is representable. [You may assume standard results about
the Yoneda embedding.]

An object A of a category E is said to be 0-presentable if the functor E(A, –): E → Set
preserves colimits. In elementary terms, this says that any map from A into the vertex
of a colimiting cone in E will factor through one of the colimit injections in an essentially
unique way.

(d) Show that every representable functor in [Cop,Set] is 0-presentable. [You may assume
standard results about colimits in presheaf categories.]

(e) Show that if C has equalisers, then every 0-presentable object of [Cop,Set] is repre-
sentable. [Hint: express the object in question as a colimit of representables.]
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5 Explain how a poset is realised as a category. What is a functor between posets?

(a) Let f : X → Y and g : Y → X be a pair of functors between posets. Describe in
explicit terms what an adjunction f ⊣ g is.

(b) Let p : A → B be a map of sets and let p∗ : PB → PA be the induced map of power-
sets sending X ⊆ B to p∗(X) = { a ∈ A | p(a) ∈ X }. Exhibit left and right adjoints
to p∗.

(c) Fix a non-empty topological space S, and let O(S) denote the poset of open subsets
of S, ordered by inclusion. Let

∆: Set → [O(S)op,Set]

be the functor assigning to a set the presheaf ∆A with constant value A. Exhibit left
and right adjoints to ∆. [In this part you are only expected to define the functors on
objects and when you show adjointness you are not expected to carry out any formal
checks of naturality.]

6 State and prove the General Adjoint Functor Theorem. (If you wish to appeal to an
initial object lemma, you should prove it.)

7

(a) Define the structure of a monad on a category C, and the category of algebras for a
monad.

(b) Show that any adjunction F ⊣ G : D → C induces a monad on C.
(c) Show that the forgetful functor from the category CT of T-algebras to C has a left

adjoint.
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8 Let T be a monad on a category C induced by an adjunction F ⊣ G : D → C.

(a) Define the comparison functor K : D → CT. [You need not prove that it is well-
defined.]

(b) Give, with proof, necessary and sufficient conditions for K to have a left adjoint.

(c) Give, with proof, necessary and sufficient conditions for the adjunction in part (b) to
have an invertible unit.
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