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1 This problem goes through the main part of the proof that projective space Pn over
the field k is compact. That is, for any algebraic set X over k and any closed subset
Y ⊂ X ×Pn, the image of Y under the projection π : X ×Pn → X is closed in X. (Also,
Pn is separated, but we won’t check that here.)

(a) Show that it suffices to prove the above statement for X affine.

(b) Let f1, . . . , fr be homogeneous polynomials in k[y0, . . . , yn]. Let m be the ideal
(y0, . . . , yn). Show that the set {f1 = 0, . . . , fr = 0} ⊂ Pn is empty if and only if the
ideal (f1, . . . , fr) contains mN for some N > 0. [You may use general theorems on affine
algebraic geometry.]

(c) Show that

π(Y ) =
⋂

N>0

{x ∈ X : the ideal in k[y0, . . . , yn] generated by f1(x, y), . . . , fr(x, y)

does not contain mN}.

[For X affine, say X closed in Am, you may use that any closed subset of X×Pn is given
by the vanishing of some polynomials f1(x, y), . . . , fr(x, y) (writing x for x1, . . . , xm and y

for y0, . . . , yn) which are homogeneous in y.]

(d) Show that, for any algebraic set X over k and any closed subset Y ⊂ X×Pn, the
image π(Y ) ⊂ X is closed in X.

2 (a) Let X be a smooth projective curve of genus g over k, and let X(k) be its set
of k-points. Let Pic0(X) be the group of line bundles of degree 0 on X, and write O(D)
for the line bundle corresponding to a divisor D. Fix a point p0 ∈ X(k). Show that, if
g > 1, then the function α : X(k) → Pic0(X) defined by α(p) = O(p − p0) is injective.
Also, what is Pic0(X) if g = 0?

(b) For X of genus 1, use part (a) to define the structure of an abelian group on
the set X(k), by showing that α is bijective.

(c) Show that, for X of any genus, the abelian group Pic0(X) is generated by the
subset α(X(k)) ⊂ Pic0(X).

3 Give examples, with justification, of:

(a) a smooth curve of degree 3 over the algebraic closure of the field F3 = Z/3.

(b) an irreducible surface in P3 over C with exactly one singular point.

(c) an irreducible curve in P2 over C with exactly two singular points.
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4 Let k be an algebraically closed field of characteristic zero. Let the group Z/2
act on the affine plane A2 over k by (x, y) 7→ (−x,−y). Let R be the sub-k-algebra of
O(A2) = k[x, y] consisting of the regular functions which are constant on all Z/2-orbits
in A2. Give a basis for R as a k-vector space. Show that R is a finitely generated k-
algebra which is an integral domain. Let Y be the corresponding affine variety. Describe
an embedding of Y into A3, and find an equation satisfied by Y .

The inclusion R ⊂ k[x, y] corresponds to a morphism f : A2 → Y . Show that f is
surjective. Finally, find the singular set of Y (the subset where Y is not smooth over k).

5 (a) Show that any regular function on a projective variety is constant.

(b) Let C be a smooth compact curve, S ⊂ C a finite subset. Show that any
morphism from C − S to projective space Pn extends to a morphism on all of C.
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