UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Wednesday, 3 June, 2009 9:00 am to 12:00 pm

PAPER 21

ALGEBRAIC GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 This problem goes through the main part of the proof that projective space \mathbf{P}^n over the field k is compact. That is, for any algebraic set X over k and any closed subset $Y \subset X \times \mathbf{P}^n$, the image of Y under the projection $\pi : X \times \mathbf{P}^n \to X$ is closed in X. (Also, \mathbf{P}^n is separated, but we won't check that here.)

(a) Show that it suffices to prove the above statement for X affine.

(b) Let f_1, \ldots, f_r be homogeneous polynomials in $k[y_0, \ldots, y_n]$. Let **m** be the ideal (y_0, \ldots, y_n) . Show that the set $\{f_1 = 0, \ldots, f_r = 0\} \subset \mathbf{P}^n$ is empty if and only if the ideal (f_1, \ldots, f_r) contains \mathbf{m}^N for some $N \ge 0$. [You may use general theorems on affine algebraic geometry.]

(c) Show that

$$\pi(Y) = \bigcap_{N \ge 0} \{ x \in X : \text{the ideal in } k[y_0, \dots, y_n] \text{ generated by } f_1(x, y), \dots, f_r(x, y)$$
does not contain $\mathbf{m}^N \}.$

[For X affine, say X closed in A^m , you may use that any closed subset of $X \times \mathbf{P}^n$ is given by the vanishing of some polynomials $f_1(x, y), \ldots, f_r(x, y)$ (writing x for x_1, \ldots, x_m and y for y_0, \ldots, y_n) which are homogeneous in y.]

(d) Show that, for any algebraic set X over k and any closed subset $Y \subset X \times \mathbf{P}^n$, the image $\pi(Y) \subset X$ is closed in X.

2 (a) Let X be a smooth projective curve of genus g over k, and let X(k) be its set of k-points. Let $Pic^{0}(X)$ be the group of line bundles of degree 0 on X, and write O(D)for the line bundle corresponding to a divisor D. Fix a point $p_{0} \in X(k)$. Show that, if $g \ge 1$, then the function $\alpha : X(k) \to Pic^{0}(X)$ defined by $\alpha(p) = O(p - p_{0})$ is injective. Also, what is $Pic^{0}(X)$ if g = 0?

(b) For X of genus 1, use part (a) to define the structure of an abelian group on the set X(k), by showing that α is bijective.

(c) Show that, for X of any genus, the abelian group $Pic^{0}(X)$ is generated by the subset $\alpha(X(k)) \subset Pic^{0}(X)$.

3 Give examples, with justification, of:

(a) a smooth curve of degree 3 over the algebraic closure of the field $\mathbf{F}_3 = \mathbf{Z}/3$.

(b) an irreducible surface in \mathbf{P}^3 over \mathbf{C} with exactly one singular point.

(c) an irreducible curve in \mathbf{P}^2 over \mathbf{C} with exactly two singular points.

UNIVERSITY OF

4 Let k be an algebraically closed field of characteristic zero. Let the group $\mathbb{Z}/2$ act on the affine plane A^2 over k by $(x, y) \mapsto (-x, -y)$. Let R be the sub-k-algebra of $O(A^2) = k[x, y]$ consisting of the regular functions which are constant on all $\mathbb{Z}/2$ -orbits in A^2 . Give a basis for R as a k-vector space. Show that R is a finitely generated k-algebra which is an integral domain. Let Y be the corresponding affine variety. Describe an embedding of Y into A^3 , and find an equation satisfied by Y.

The inclusion $R \subset k[x, y]$ corresponds to a morphism $f : A^2 \to Y$. Show that f is surjective. Finally, find the singular set of Y (the subset where Y is not smooth over k).

5 (a) Show that any regular function on a projective variety is constant.

(b) Let C be a smooth compact curve, $S \subset C$ a finite subset. Show that any morphism from C - S to projective space \mathbf{P}^n extends to a morphism on all of C.

END OF PAPER