MATHEMATICAL TRIPOS Part III

Monday, 8 June, 2009 9:00 am to 12:00 pm

PAPER 20

FOUR-MANIFOLDS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Figure 1a shows a Kirby diagram for a 4-manifold W composed of a 0-handle, two 1-handles, and a 2-handle. Compute $\pi_1(W), H_*(W)$, and $H_*(\partial W)$.

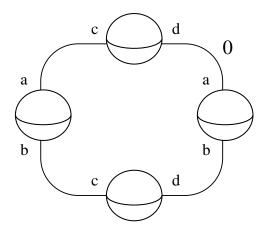
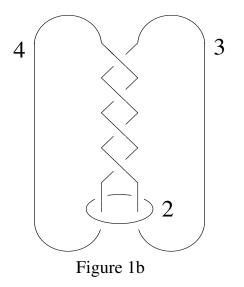


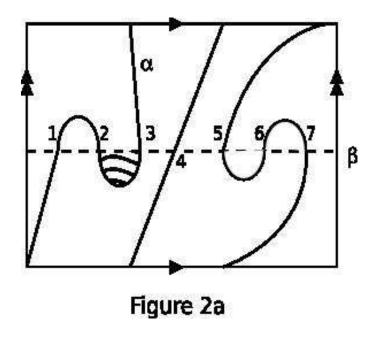
Figure 1a

(ii) Same question for the Kirby diagram of Figure 1b, which consists of a 0-handle and three 2-handles.

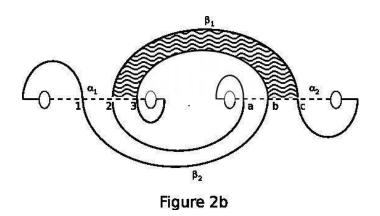


- (iii) For the diagram of Figure 1a, explain how to construct an embedded torus representing a nontrivial class in $H_2(W)$.
- (iv) Explain how to construct a negative definite four-manifold bounding L(7,3). What is its intersection form? [*Hint: Consider a Kirby diagram in the form of a chain.*]

2 (i) Let $(\Sigma, \alpha, \beta, z)$ be the pointed genus 1 Heegaard diagram shown in Figure 2a. Find all generators of the complex $CF^{-}(\Sigma, \alpha, \beta, z)$. Divide them into equivalence classes (where $\mathbf{x} \sim \mathbf{y}$ if and only if $\pi_2(\mathbf{x}, \mathbf{y}) \neq \emptyset$). Compute the relative homological gradings in each equivalence class.



(ii) Same as part (i), but for the genus 2 Heegaard diagram shown in Figure 2b.



(iii) Explain why the shaded domains in each diagram have $\#\overline{\mathcal{M}}(\psi) = \pm 1$. Use this to compute the homology of the chain complexes in parts (i) and (ii).

3 (i) Suppose $K \subset S^3$ is a knot, and let K_n denote the result of *n*-surgery on K. For *n* a positive integer and \mathfrak{t}_k a $Spin^c$ structure on K_n , state the exact triangle relating $HF^-(K_0)$ to $HF^-(K_n,\mathfrak{t}_k)$. Which maps in the triangle are induced by cobordisms? For those that are, describe the set of $Spin^c$ structures on the cobordism and their restriction to the boundary.

4

- (ii) Now suppose that K = U is the unknot in S^3 . Describe the exact triangle of part (i) explicitly in this case. What are the three-manifolds appearing in the triangle, and what is their Floer homology? What are the maps induced by cobordisms? How do they affect the absolute grading?
- 4 (i) Suppose X is a smooth complex surface and $\Sigma \subset X$ is a smooth complex curve. Derive the adjunction formula relating $c_1(TX)$ and the genus of Σ .
 - (ii) If Σ is a smooth complex curve of genus 3 in a K3 surface, what is its self-intersection?
 - (iii) Suppose that M is a closed smooth 4-manifold with $b_2^+ \ge 3$ and that Σ is a smoothly embedded surface in M with $\Sigma \cdot \Sigma \ge 0$. Suppose further that \mathfrak{s} is a $Spin^c$ structure on M with $\Phi(M,\mathfrak{s}) \ne 0$. Given that $HF^-(\Sigma \times S^1,\mathfrak{t}) = 0$ whenever $\langle c_1(\mathfrak{t}), [\Sigma] \rangle > 2g(\Sigma) 2$, show that $\langle c_1(\mathfrak{s}), [\Sigma] \rangle + \Sigma \cdot \Sigma \leq 2g(\Sigma) 2$.
- 5 (i) Let Y be a 3-manifold with $b_1(Y) = 0$ and $\mathfrak{s} \in Spin^c(Y)$. Describe (without proof) the structure of $HF^{\infty}(Y,\mathfrak{s})$. By considering the structure of $HF^{-}(Y,\mathfrak{s})$ as a $\mathbb{Z}[U]$ module, or otherwise, show that the Euler characteristic of $\widehat{HF}(Y,\mathfrak{s})$ is always ± 1 .
 - (ii) Suppose $W: Y_1 \to Y_2$ is a cobordism, $\mathfrak{s} \in Spin^c(W)$, and $b_1(Y_i) = 0$. Describe (without proof) the map $\Phi_{W,\mathfrak{s}}^{\infty}: HF^{\infty}(Y_1,\mathfrak{s}|_{Y_1}) \to HF^{\infty}(Y_2,\mathfrak{s}|_{Y_2})$.
 - (iii) If M is a closed 4-manifold with $b_2^+(M) \ge 2$, explain how to define the invariant $\Phi(M, \mathfrak{s})$. Why is the condition on b_2^+ necessary?

END OF PAPER