UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2009 9:00 am to 12:00 pm

PAPER 2

TOPICS IN GROUP THEORY

There are two sections, of three questions each. Attempt no more than **THREE** questions, **NOT** all from the same section. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION A

1 State and prove the Jordan - Hölder Theorem concerning the composition series of finite groups.

Let G be a group of order 120, with composition factors C_2 and A_5 . Show that if G has a normal subgroup K of order 2, then K = Z(G), the centre of G. Deduce that S_5 does not have a normal subgroup of order 2.

Find, with justification, all composition series of the groups $C_2 \times S_5$ and $S_5 \times S_5$.

Show that $SL_2(5)$ has centre of order 2. By considering elements of order 2, show that $SL_2(5)$ has no subgroup of index 2.

2 State the theorem of P. Hall concerning the subgroups of finite soluble groups, and outline briefly its proof.

Let A and B be maximal subgroups in the finite soluble group G. Prove that either G factorises as G = AB, or A and B are conjugate in G. You should consider first the case where G has a non-trivial normal subgroup K, contained in A or B; in the other case, consider normal subgroups K < L of G with K minimal normal in G and L/K minimal normal in G/K, and the intersections of A and B with these.

3 State Sylow's Theorems.

Let $G = S_6$, let N be a subgroup of order 20. Show that N is the normaliser of a Sylow 5-subgroup P of G, and that N is contained in the stabiliser H of a point in the natural action of G of degree 6.

By considering the action of S_5 on the set of its Sylow 5-subgroups, show that H is isomorphic to a transitive subgroup of S_6 . Deduce the existence of an outer automorphism τ of S_6 that interchanges the conjugacy class of transitive subgroups isomorphic to S_5 with the conjugacy class of point-stabilisers in the natural action of S_6 .

Let \overline{G} be the automorphism group of S_6 , so that \overline{G} is the group of order 1440 generated by G and τ . Show that the normaliser \overline{N} in \overline{G} of a Sylow 5-subgroup \overline{P} of \overline{G} has order 40, and is a maximal subgroup of \overline{G} .

SECTION B

4 Define the group $SL_n(q)$, the special linear group over the field GF(q) of q elements, and obtain a formula for its order.

Show that $SL_n(q)$ is generated by its transvections if either $n \ge 3$, or if n = 2 and q > 3.

Use Iwasawa's Lemma (which should be stated but need not be proved) to show that the projective special linear group $PSL_n(q)$ is simple, if either $n \ge 3$, or if n = 2 and q > 3.

Show that $PSL_2(4)$ and $PSL_2(5)$ are both isomorphic to A_5 .

Show that $PSL_3(4)$ and $PSL_4(2)$ have the same order but are not isomorphic. (Consider the conjugacy classes of elements of order 2; they are determined by their Jordan Normal Forms.)

5 Define the symplectic group $Sp_{2m}(q)$ over the field GF(q) of q elements, and determine its order. What is the order of $Sp_4(2)$?

The symmetric group S_{2m} acts naturally on a vector space $V_{2m}(2)$ over the field GF(2). Show that there is an invariant subspace of codimension 1, on which the usual dot product gives a symplectic form with a 1-dimensional radical.

Deduce that S_{2m+2} is isomorphic to a subgroup of $Sp_{2m}(2)$ for $m \ge 2$, and that $S_6 \simeq Sp_4(2)$.

6 Write an essay on the O'Nan – Scott Theorem.

Illustrate by describing (without proof) the maximal subgroups of S_n for n = 16 and n = 60.

END OF PAPER