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1 Define an almost complex structure J on a smooth manifold M and differential
(p, q)-forms with respect to J . An almost complex structure J is called integrable (or
torsion-free) if [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ] = 0, for each pair of vector fields
X,Y on M . State at least two other, different ways to equivalently define the integrable
property of J . If M is a complex manifold, explain what is meant by the almost complex
structure JM induced by the holomorphic atlas, showing that JM is integrable.

Let Y ⊂ M be an embedded smooth real submanifold. Prove that if for each y ∈ Y

the tangent space TyY satisfies JM (TyY ) ⊆ TyY then JM induces, by restriction to TY ,
an integrable complex structure on Y .

[Any form of the Inverse Function Theorem and the Implicit Function Theorem may be
used without proof if accurately stated.]

Give a definition of non-singular analytic subvariety of a complex manifold. Let
p(z) = zT Qz, z ∈ C4 be a homogeneous quadratic polynomial defined by a symmetric
invertible matrix Q ∈ GL(4, C). Show that S = {z ∈ CP 3 : p(z) = 0} is a non-singular
analytic subvariety of CP 3. Show also that S contains two distinct projective lines passing
through each point and deduce that S is biholomorphic to CP 1 × CP 1.

[You may assume that every A ∈ GL(n + 1, C) induces a biholomorphic map of CPn onto
itself.]

2 Define the differential operators ∂, ∂̄, dc. Verify that for each real differential form
η on a complex manifold the differential form i∂∂̄η is also real. Define the Dolbeault
cohomology Hp,q(X) of a complex manifold X. Prove that if X is compact and connected
then H0,0(X) ∼= C.

[Basic properties of holomorphic functions on domains in C may be used without proof.]

Define what is meant by a holomorphic p-form on a complex manifold X. Let n

denote the complex dimension of X, suppose that X is compact and let α 6≡ 0 be a
holomorphic n-form on X. By considering the integral

∫
X α ∧ ᾱ, or otherwise, show that

α cannot be d-exact. Show further that if n = 2, i.e. if X is a compact complex surface,
then every holomorphic p-form on X is d-closed and never d-exact, unless identically zero.
[It is not known whether X admits a Kähler metric.]

[Standard results about real differential forms and integration over smooth manifolds may
be assumed without proof, provided these are clearly stated.]
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3 Define what is meant by an irreducible analytic hypersurface Y in a compact complex
manifold X and a local defining function of Y at a point p ∈ X. Show that a local defining
function is uniquely determined, up to multiplication by holomorphic functions f with
f(p) 6= 0. [You should accurately state any standard results about local rings that you
require, but you are not expected to show the existence of a local defining function at
singular points of Y .]

Define the divisors on X and explain what is meant by the holomorphic line
bundle [D] associated to a divisor D. If H1 and H2 are two hyperplanes in CPn, prove
that [H1] and [H2] are isomorphic holomorphic bundles.

Define the terms blow-up σ : X̃ → X at a point p ∈ X and exceptional divisor
E on X̃. State the relation between the canonical bundles KX and KX̃ . Let Y be an
irreducible non-singular analytic hypersurface in X, such that p ∈ Y , and let Ỹ denote
the closure of σ−1(Y \{p}) in X̃. Suppose that the line bundle [−Y ] is isomorphic to KX .
Show that Ỹ is a well-defined analytic hypersurface and that [−Ỹ ] will be isomorphic to
KX̃ if and only if X is a complex surface.

[You may assume that the transition functions determine a vector bundle up to an isomor-
phism and that the holomorphic bundles [D1 +D2] and [D1]⊗ [D2] are isomorphic for each
pair of divisors D1,D2.]

4 Define the terms holomorphic line bundle L over a complex manifold X and local
holomorphic section of L. If L is endowed with a Hermitian inner product on the fibres,
explain what is meant by a Chern connection on L. Prove the existence and uniqueness
of a Chern connection and determine a formula for the curvature of a Chern connection
in terms of local holomorphic sections of L.

Now suppose that h1 and h2 are two choices of Hermitian inner product on the
fibres of L. For j = 1, 2, let Aj denote the Chern connections on L determined by hj, with
F (Aj) its curvature form. Show that iF (A1) and iF (A2) represent the same Dolbeault
cohomology class in H1,1(X).

Let L̂→ X be a holomorphic line bundle, such that L̂ admits a nowhere-zero smooth
section over X . Show that if H0,1(X) = 0 then L̂ admits a nowhere-zero holomorphic
section over X .

[Standard properties of connections on vector bundles over smooth manifolds may be used
without proof, provided these are accurately stated.]
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5 Let X be a Hermitian manifold. Define the fundamental form ω of the Hermitian
metric, showing that ω is a real (1, 1)-form. Define the complex Hodge ∗-operator, the
Laplacian ∆ = ∆d and the complex Laplacian ∆∂̄ on X. State the Hodge theorem for the
space of (p, q)-forms.

Now suppose that X is compact and Kähler. Show that if α is a (p, q)-form on X

(p > 0, q > 0), dα = 0 and α is L2-orthogonal to the space of harmonic (p, q)-forms then
α = ∂∂̄β.

Show that if dimC X > 1 then the restriction of the Lefschetz operator L(α) = α∧ω

to 1-forms on X is injective. Show that L commutes with ∆ and deduce that the Betti
numbers satisfy b3(X) > b1(X).

[You may assume that on a compact Hermitian manifold ∂̄∗ = − ∗ ∂∗ is the formal L2

adjoint of ∂̄ and that the space of d-harmonic r-forms is isomorphic to the de Rham
cohomology of degree r. The identities [∂̄∗, L] = i∂ and ∆ = 2∆∂̄ = 2∆∂ on Kähler
manifolds may be used without proof, provided that you include the relevant definitions.]

END OF PAPER

Part III, Paper 19


	Rubric
	1D 
	2D 
	3D 
	4D 
	5D 

