UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2009 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 19

COMPLEX MANIFOLDS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Define an almost complex structure J on a smooth manifold M and differential (p,q)-forms with respect to J. An almost complex structure J is called *integrable* (or torsion-free) if [JX, JY] - [X, Y] - J[X, JY] - J[JX, Y] = 0, for each pair of vector fields X, Y on M. State at least two other, different ways to equivalently define the integrable property of J. If M is a complex manifold, explain what is meant by the almost complex structure J_M induced by the holomorphic atlas, showing that J_M is integrable.

Let $Y \subset M$ be an embedded smooth real submanifold. Prove that if for each $y \in Y$ the tangent space $T_y Y$ satisfies $J_M(T_y Y) \subseteq T_y Y$ then J_M induces, by restriction to TY, an integrable complex structure on Y.

[Any form of the Inverse Function Theorem and the Implicit Function Theorem may be used without proof if accurately stated.]

Give a definition of non-singular analytic subvariety of a complex manifold. Let $p(z) = z^T Q z$, $z \in \mathbb{C}^4$ be a homogeneous quadratic polynomial defined by a symmetric invertible matrix $Q \in GL(4, \mathbb{C})$. Show that $S = \{z \in \mathbb{C}P^3 : p(z) = 0\}$ is a non-singular analytic subvariety of $\mathbb{C}P^3$. Show also that S contains two distinct projective lines passing through each point and deduce that S is biholomorphic to $\mathbb{C}P^1 \times \mathbb{C}P^1$.

[You may assume that every $A \in GL(n+1, \mathbb{C})$ induces a biholomorphic map of $\mathbb{C}P^n$ onto itself.]

2 Define the differential operators ∂ , $\overline{\partial}$, d^c . Verify that for each real differential form η on a complex manifold the differential form $i\partial\overline{\partial}\eta$ is also real. Define the *Dolbeault* cohomology $H^{p,q}(X)$ of a complex manifold X. Prove that if X is compact and connected then $H^{0,0}(X) \cong \mathbb{C}$.

[Basic properties of holomorphic functions on domains in \mathbb{C} may be used without proof.]

Define what is meant by a holomorphic p-form on a complex manifold X. Let n denote the complex dimension of X, suppose that X is compact and let $\alpha \neq 0$ be a holomorphic n-form on X. By considering the integral $\int_X \alpha \wedge \bar{\alpha}$, or otherwise, show that α cannot be d-exact. Show further that if n = 2, i.e. if X is a compact complex surface, then every holomorphic p-form on X is d-closed and never d-exact, unless identically zero. [It is not known whether X admits a Kähler metric.]

[Standard results about real differential forms and integration over smooth manifolds may be assumed without proof, provided these are clearly stated.]

CAMBRIDGE

3 Define what is meant by an *irreducible analytic hypersurface* Y in a compact complex manifold X and a *local defining function* of Y at a point $p \in X$. Show that a local defining function is uniquely determined, up to multiplication by holomorphic functions f with $f(p) \neq 0$. [You should accurately state any standard results about local rings that you require, but you are not expected to show the existence of a local defining function at singular points of Y.]

Define the *divisors* on X and explain what is meant by the holomorphic line bundle [D] associated to a divisor D. If H_1 and H_2 are two hyperplanes in $\mathbb{C}P^n$, prove that $[H_1]$ and $[H_2]$ are isomorphic holomorphic bundles.

Define the terms blow-up $\sigma : \tilde{X} \to X$ at a point $p \in X$ and exceptional divisor E on \tilde{X} . State the relation between the canonical bundles K_X and $K_{\tilde{X}}$. Let Y be an irreducible non-singular analytic hypersurface in X, such that $p \in Y$, and let \tilde{Y} denote the closure of $\sigma^{-1}(Y \setminus \{p\})$ in \tilde{X} . Suppose that the line bundle [-Y] is isomorphic to K_X . Show that \tilde{Y} is a well-defined analytic hypersurface and that $[-\tilde{Y}]$ will be isomorphic to $K_{\tilde{X}}$ if and only if X is a complex surface.

[You may assume that the transition functions determine a vector bundle up to an isomorphism and that the holomorphic bundles $[D_1 + D_2]$ and $[D_1] \otimes [D_2]$ are isomorphic for each pair of divisors D_1, D_2 .]

4 Define the terms holomorphic line bundle L over a complex manifold X and local holomorphic section of L. If L is endowed with a Hermitian inner product on the fibres, explain what is meant by a *Chern connection* on L. Prove the existence and uniqueness of a Chern connection and determine a formula for the curvature of a Chern connection in terms of local holomorphic sections of L.

Now suppose that h_1 and h_2 are two choices of Hermitian inner product on the fibres of L. For j = 1, 2, let A_j denote the Chern connections on L determined by h_j , with $F(A_j)$ its curvature form. Show that $iF(A_1)$ and $iF(A_2)$ represent the same Dolbeault cohomology class in $H^{1,1}(X)$.

Let $\hat{L} \to X$ be a holomorphic line bundle, such that \hat{L} admits a nowhere-zero smooth section over X. Show that if $H^{0,1}(X) = 0$ then \hat{L} admits a nowhere-zero holomorphic section over X.

[Standard properties of connections on vector bundles over smooth manifolds may be used without proof, provided these are accurately stated.]

UNIVERSITY OF

5 Let X be a Hermitian manifold. Define the fundamental form ω of the Hermitian metric, showing that ω is a real (1,1)-form. Define the complex Hodge *-operator, the Laplacian $\Delta = \Delta_d$ and the complex Laplacian $\Delta_{\bar{\partial}}$ on X. State the Hodge theorem for the space of (p,q)-forms.

Now suppose that X is compact and Kähler. Show that if α is a (p,q)-form on X $(p > 0, q > 0), d\alpha = 0$ and α is L^2 -orthogonal to the space of harmonic (p,q)-forms then $\alpha = \partial \overline{\partial} \beta$.

Show that if $\dim_{\mathbb{C}} X > 1$ then the restriction of the Lefschetz operator $L(\alpha) = \alpha \wedge \omega$ to 1-forms on X is injective. Show that L commutes with Δ and deduce that the Betti numbers satisfy $b^3(X) \ge b^1(X)$.

[You may assume that on a compact Hermitian manifold $\bar{\partial}^* = -*\partial *$ is the formal L^2 adjoint of $\bar{\partial}$ and that the space of d-harmonic r-forms is isomorphic to the de Rham cohomology of degree r. The identities $[\bar{\partial}^*, L] = i\partial$ and $\Delta = 2\Delta_{\bar{\partial}} = 2\Delta_{\partial}$ on Kähler manifolds may be used without proof, provided that you include the relevant definitions.]

END OF PAPER