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CURVES AND ABELIAN VARIETIES

Attempt no more than THREE questions.

There are SIX questions in total.

The questions carry equal weight.

In questions (1)-(5) C is a curve of genus g > 2
over an algebraically closed field k.
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1 Define the Picard functor of degree d line bundles on C, and show that it is
representable by a k-variety Picd

C = Jacd
C . Show that Jacd

C is smooth and proper.

2 Define the theta divisor Θ in X = Jacg−1
C . For a fixed divisor class D of degree g

on C, define φD : C → X by φD(P ) = [D−P ]. Show that φD(C) is contained in Θ if and
only if dimH0(C,O(D)) > 2, and that φD(C) ∩Θ = D otherwise.

Show that dimH0(X,O(Θ)) = 1.

3 Put A = Jac0
C . Fix a number N prime to char k. Show that the N -torsion A[N ]

is isomorphic to (Z/NZ)2g [you may assume the theorem of the cube]. Define the Weil pair-
ing eN on A[N ], and prove that it is non-degenerate.

4 Consider the abelian sum map α : C3g−3 → X.

(i) Show that α∗Θ is linearly equivalent to 2
∑3g−3

1 pr∗i KC −
∑

i<j ∆ij, where KC is the
canonical class and ∆ij is an appropriate diagonal.

(ii) Suppose that P ∈ A[N ]. Show that if (σP
i ) is a basis of H0(C,O(2KC + P )) and

(σi) is a basis of H0(C,O(2KC )), then there is a rational function fP ∈ k(X) such that
(fP ) = NΘP −NΘ, where ΘP is the translate t∗P Θ = Θ + P , whose pull back to C3g−3 is
given by

fP (z1, ..., z3g−3) = (det(σP
i (zj))/det(σi(zj)))N .

5 Show that the fibres of the abelian sum map α : C(d) → Jacd
C are smooth as schemes.

6 In this question, we work over the complex numbers.

Suppose that C is a compact Riemann surface of genus g > 1. Show that H1(C,Z)
embeds in H0(C,Ω1

C)∨ as a lattice, and that, having fixed a base point P0 ∈ C, two points
in C(d) have the same image in H0(C,Ω1

C)∨/H1(C,Z) under the map
∑

Qi 7→ (ω 7→∑∫ Qi

P0
ω)) if and only if they are linearly equivalent as divisors on C.
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