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(a) Let M be a smooth manifold. Define what it means for E to be a smooth vector
bundle over M , and what it means to have a smooth metric on E. Show that any
vector bundle admits a smooth metric.

(b) Now suppose we have a subbundle F ⊂ E (i.e. F is another smooth vector bundle
that is a submanifold of E and Fp is a linear subspace of Ep for each p ∈ M). Define

E/F =
⊔

p∈M

Ep/Fp

and show how E/F can be made into a smooth vector bundle.

(c) Finally show that if F is a subbundle of E then the direct sum bundle F ⊕ (E/F )
is isomorphic as a vector bundle to E.

[Hint: start by picking a metric on E. You may assume the direct sum of bundles
exists].

2

(a) Define the space Ωp(M) of smooth p-forms on a smooth manifold M . Also define the
exterior derivative map d : Ωp(M) → Ωp+1(M) taking care to ensure that what you
write is well-defined, and prove that d2 = 0. Explain how the identity d2 = 0 is used
to define the p-th de-Rham cohomology group Hp

dR(M), and show that Hp
dR(M) = 0

for p > dim M .

(b) Suppose now that M is the disjoint union of two smooth manifolds U and V . Prove
there is an isomorphism

Hp
dR(M) ≃ Hp

dR(U)⊕Hp
dR(V ) (∗)

for all p > 0.

(c) Now suppose we drop the assumption that U and V are disjoint. Give a proof or
counterexample with justification of the isomorphism (*) (i) in the case p = 0 and
(ii) in the case p = 1.
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(a) Let G be a Lie group, and for each g ∈ G define Lg : G→ G by Lg(h) = gh. Define
what it means for a vector field X to be left invariant. If g is the tangent space to G
at the identity, show how g is isomorphic to the space of left-invariant vector fields
on G and show how this enables you to make g into a Lie-algebra.

(b) We say a differential form ω is left invariant if L∗
gω = ω for all g ∈ G. Show that

if ω is a left-invariant one-form and X is a left invariant vector field then ω(X) is
constant. Using this or otherwise show that if Y is another left-invariant vector field
then

dω(X,Y ) = −ω([X,Y ]).

[Standard identities may be used without proof as long as they are stated clearly.]

(c) Finally suppose that g is abelian (i.e. the Lie bracket [ψ, η] vanishes for all ψ, η in
g). Show that if ω is a left-invariant one-form then dω = 0.
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(a) Let M be a smooth manifold and g be a Riemannian metric on M . Given a
connection ∇ on M define

(i) what it means for ∇ to be compatible with g and

(ii) what it means for ∇ to be symmetric and

(iii) the Levi-Civita connection on M .

[You are not expected to show the Levi-Civita connection exists.]

Describe the Levi-Civita connection when M = Rn and g is the usual Euclidean
metric.

(b) Suppose now that ∇ is the Levi-Civita connection on M . Define the curvature
tensor R(X,Y ) ∈ End(TM) for vector fields X,Y and prove the identity

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

(c) Now suppose that M ⊂ Rn is an embedded oriented hypersurface, with outward
normal vector n. If X,Y are vector fields on M define

∇X(Y ) = ∇̃X̃(Ỹ )− < ∇̃X̃(Ỹ ), n > n

where X̃ and Ỹ are extensions of X and Y to Rn and ∇̃ is the Levi-Civita
connection on Rn (with respect the usual Euclidean metric). Show that ∇ is the
Levi-Civita connection on M with respect to the induced metric. [You may assume
the expression for ∇X(Y ) does not depend on the choice of extensions X̃ and Ỹ .]
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(a) Let π : E → M be a smooth vector bundle on a smooth manifold M . Define what
it means for ∇ to be a connection on E, and prove that any smooth vector bundle
admits a connection.

(b) Now suppose we have a connection ∇ on E and a local frame e1, . . . , er of E|U over
some open set U ⊂ M . Define the connection matrix θ and the curvature matrix Θ
with respect to this frame and show that

dΘ = Θ ∧ θ − θ ∧Θ.

(c) If Θ has entries Θ = (Θij)ri,j=1 let

α =
r∑

i=1

Θii.

Prove that α does not depend on the choice of frame, and also that α is a closed
2-form.
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