UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2009 9:00 am to 12:00 pm

PAPER 17

DIFFERENTIAL GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (a) Let M be a smooth manifold. Define what it means for E to be a smooth vector bundle over M, and what it means to have a smooth metric on E. Show that any vector bundle admits a smooth metric.
- (b) Now suppose we have a subbundle $F \subset E$ (i.e. F is another smooth vector bundle that is a submanifold of E and F_p is a linear subspace of E_p for each $p \in M$). Define

$$E/F = \bigsqcup_{p \in M} E_p/F_p$$

and show how E/F can be made into a smooth vector bundle.

(c) Finally show that if F is a subbundle of E then the direct sum bundle $F \oplus (E/F)$ is isomorphic as a vector bundle to E.

[*Hint:* start by picking a metric on E. You may assume the direct sum of bundles exists].

 $\mathbf{2}$

- (a) Define the space $\Omega^p(M)$ of smooth *p*-forms on a smooth manifold M. Also define the exterior derivative map $d: \Omega^p(M) \to \Omega^{p+1}(M)$ taking care to ensure that what you write is well-defined, and prove that $d^2 = 0$. Explain how the identity $d^2 = 0$ is used to define the *p*-th de-Rham cohomology group $H^p_{dR}(M)$, and show that $H^p_{dR}(M) = 0$ for $p > \dim M$.
- (b) Suppose now that M is the disjoint union of two smooth manifolds U and V. Prove there is an isomorphism

$$H^p_{dR}(M) \simeq H^p_{dR}(U) \oplus H^p_{dR}(V) \qquad (*)$$

for all $p \ge 0$.

(c) Now suppose we drop the assumption that U and V are disjoint. Give a proof or counterexample with justification of the isomorphism (*) (i) in the case p = 0 and (ii) in the case p = 1.

UNIVERSITY OF

3

- (a) Let G be a Lie group, and for each $g \in G$ define $L_g: G \to G$ by $L_g(h) = gh$. Define what it means for a vector field X to be left invariant. If \mathfrak{g} is the tangent space to G at the identity, show how \mathfrak{g} is isomorphic to the space of left-invariant vector fields on G and show how this enables you to make \mathfrak{g} into a Lie-algebra.
- (b) We say a differential form ω is left invariant if $L_g^*\omega = \omega$ for all $g \in G$. Show that if ω is a left-invariant one-form and X is a left invariant vector field then $\omega(X)$ is constant. Using this or otherwise show that if Y is another left-invariant vector field then

$$d\omega(X,Y) = -\omega([X,Y]).$$

[Standard identities may be used without proof as long as they are stated clearly.]

(c) Finally suppose that \mathfrak{g} is abelian (i.e. the Lie bracket $[\psi, \eta]$ vanishes for all ψ, η in \mathfrak{g}). Show that if ω is a left-invariant one-form then $d\omega = 0$.

 $\mathbf{4}$

- (a) Let M be a smooth manifold and g be a Riemannian metric on M. Given a connection ∇ on M define
 - (i) what it means for ∇ to be compatible with g and
 - (ii) what it means for ∇ to be symmetric and
 - (iii) the Levi-Civita connection on M.

[You are not expected to show the Levi-Civita connection exists.]

Describe the Levi-Civita connection when $M = \mathbb{R}^n$ and g is the usual Euclidean metric.

(b) Suppose now that ∇ is the Levi-Civita connection on M. Define the curvature tensor $R(X,Y) \in \text{End}(TM)$ for vector fields X, Y and prove the identity

$$R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}.$$

(c) Now suppose that $M \subset \mathbb{R}^n$ is an embedded oriented hypersurface, with outward normal vector <u>n</u>. If X, Y are vector fields on M define

$$\nabla_X(Y) = \tilde{\nabla}_{\tilde{X}}(\tilde{Y}) - \langle \tilde{\nabla}_{\tilde{X}}(\tilde{Y}), \underline{n} \rangle \geq \underline{n}$$

where \tilde{X} and \tilde{Y} are extensions of X and Y to \mathbb{R}^n and $\tilde{\nabla}$ is the Levi-Civita connection on \mathbb{R}^n (with respect the usual Euclidean metric). Show that ∇ is the Levi-Civita connection on M with respect to the induced metric. [You may assume the expression for $\nabla_X(Y)$ does not depend on the choice of extensions \tilde{X} and \tilde{Y} .]

- $\mathbf{5}$
 - (a) Let $\pi: E \to M$ be a smooth vector bundle on a smooth manifold M. Define what it means for ∇ to be a connection on E, and prove that any smooth vector bundle admits a connection.

5

(b) Now suppose we have a connection ∇ on E and a local frame e_1, \ldots, e_r of $E|_U$ over some open set $U \subset M$. Define the connection matrix θ and the curvature matrix Θ with respect to this frame and show that

$$d\Theta = \Theta \wedge \theta - \theta \wedge \Theta.$$

(c) If Θ has entries $\Theta = (\Theta_{ij})_{i,j=1}^r$ let

$$\alpha = \sum_{i=1}^{r} \Theta_{ii}.$$

Prove that α does not depend on the choice of frame, and also that α is a closed 2-form.

END OF PAPER