UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2009 9:00 am to 12:00 pm

PAPER 16

ALGEBRAIC TOPOLOGY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

- 1
- Compute the homology groups of the following spaces.
- 1. Take a solid equilateral triangle, orient the edges to make the boundary an oriented circle, and then form the quotient space which identifies the edges according to the orienting arrows.
- 2. Attach a Möbius band to the real projective plane by gluing the boundary circle of the band to the circle $\mathbb{RP}^1 \subset \mathbb{RP}^2$ by a map of degree n.
- 3. Take $S^n \times [0, 1]$ and divide by the quotient relation $(x, 1) \sim (-x, 0)$, where $x \mapsto -x$ denotes the antipodal map.

Can any of these spaces be homotopy equivalent to closed manifolds?

2 Compute the cohomology ring of complex projective space, justifying your argument.

Let U, V and W be complex vector spaces and $\phi : U \otimes V \to W$ a complexlinear map which is injective on each factor $U \otimes v$ and $u \otimes V$ separately, for $u \in U$ and $v \in V$. Prove that the image of ϕ has rank at least $\dim_{\mathbb{C}}(U) + \dim_{\mathbb{C}}(V) - 1$.

3 Let *P* denote the real projective plane. Compute the cohomology rings of *P* and of the product $P \times P$ with \mathbb{Z}_2 -coefficients.

Suppose $\Sigma \subset P \times P$ is a smooth submanifold which is disjoint from the diagonal $\Delta \subset P \times P$. Can Σ be the graph of a smooth function? Justify your answer.

- 4 Carefully stating any theorems you invoke, give examples with justification of:
 - 1. A simply-connected manifold on which every smooth function has at least 4 critical points;
 - 2. A simply-connected space on which no finite group acts freely;
 - 3. A vector bundle which has no nowhere-zero section;
 - 4. A map which acts trivially on homology in all degrees > 0 but is not homotopic to a constant.

CAMBRIDGE

5 Let M and N be closed oriented manifolds of dimension m and n respectively. For each of the following statements provide a proof or counterexample with justification.

- 1. If n = m and if M and N are simply connected with torsion-free cohomology and equal Betti numbers, M and N are homotopy equivalent.
- 2. If M and N are simply-connected and m > n, there is a fibre bundle $F \to M \to N$ for some F.
- 3. If $f: S^m \to M$ is a map of degree 3, then M is not a product $X^k \times Y^{m-k}$ of lower-dimensional manifolds (unless k = 0).
- 4. If m = 4 the Euler characteristic of M could be any integer value.

6 The Stiefel manifold $V_k(\mathbb{C}^n)$ is the space of ordered orthonormal k-tuples of vectors in \mathbb{C}^n . Show that there is an orientable vector bundle $E \to V_k(\mathbb{C}^n)$ for which the sphere bundle $S(E) \simeq V_{k+1}(\mathbb{C}^n)$. Using the Gysin sequence, prove by induction on k that

$$H^*(V_k(\mathbb{C}^n)) \cong \Lambda_{\mathbb{Z}}(a_{2n-1}, a_{2n-3}, \dots, a_{2n-2k+1})$$

where the right hand side denotes the algebra freely generated by elements of the indicated degrees subject only to the constraints imposed by graded commutativity. Deduce that the Betti numbers $b_j(U(n))$ of the unitary group U(n) satisfy

$$\sum_{j \ge 0} b_j(U(n))t^j = \prod_{j=0}^{n-1} (1+t^{2j+1}).$$

END OF PAPER