

MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2009 9:00 to 11:00 am

PAPER 15

PERCOLATION AND COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1 Let $\overrightarrow{\Lambda}$ be a connected and locally finite infinite oriented multi-graph, and let x be any site of $\overrightarrow{\Lambda}$.

2

(i) Show that

$$p_{H}^{b}(\overrightarrow{\Lambda};x) \leqslant p_{H}^{s}(\overrightarrow{\Lambda};x) \quad \text{and} \quad p_{T}^{b}(\overrightarrow{\Lambda};x) \leqslant p_{T}^{s}(\overrightarrow{\Lambda};x).$$

(ii) Suppose that $\overrightarrow{\Lambda}$ has maximal in-degree $\Delta_{\text{in}} < \infty$. Bound $p_H^s(\overrightarrow{\Lambda}; x)$ away from 1 by a function of $p_H^b(\overrightarrow{\Lambda}; x)$ and Δ_{in} .

(iii) Suppose $p_H^b(\overrightarrow{\Lambda}; x) < 1/10$. Does it follow that $p_H^s(\overrightarrow{\Lambda}; x) < 1$?

2 Consider bond percolation on \mathbb{Z}^2 with probability p.

(i) Show that if p < 1/2 then there is a constant a = a(p) > 0 such that

$$\mathbb{P}_p(|C_0| \ge n) \le \exp(-an)$$

for all $n \ge 2$.

(ii) Deduce from the result in (i) that if p>1/2 then there is a constant b=b(p)>0 such that

$$\mathbb{P}_p(n \leqslant |C_0| < \infty) \leqslant \exp(-b\sqrt{n})$$

for all $n \ge 1$.

[The results you use should be stated precisely.]

3 (i) Prove a 0-1 law for translation-invariant events in a translation-invariant site percolation measure.

(ii) Let Λ be a connected and locally finite infinite unoriented graph, which is amenable and of finite type. Let $\mathbb{P}_{\mathbf{p}}$ be a translation-invariant independent site percolation measure on Λ . Write I_k for the event that there are precisely k infinite open clusters. Sketch a proof of the result that $\mathbb{P}_{\mathbf{p}}(I_0) = 1$ or $\mathbb{P}_{\mathbf{p}}(I_1) = 1$. Is this true if $\mathbb{P}_{\mathbf{p}}$ is a kindependent translation-invariant site percolation measure?

(iii) Deduce from the result in (ii) that for bond percolation on \mathbb{Z}^2 we have $\theta(1/2)=0.$

[The terms you use should be defined precisely.]

UNIVERSITY OF

4 Replace every second lattice point of the honeycomb lattice by a triangle to obtain a cubic plane lattice Λ whose faces are congruent regular triangles and congruent convex enneagons (9-gons) with equal sides (thus every triangle is adjacent to three enneagons, and every enneagon adjacent to three triangles and six enneagons).

(i) Sketch a proof of the relation $p_c^b(\Lambda) + p_c^b(\Lambda^*) = 1$, where Λ^* is the dual of Λ .

(ii) Show that $p_c^b(\Lambda) = 1/\sqrt{2}$.

END OF PAPER