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1 Let
−→
Λ be a connected and locally finite infinite oriented multi-graph, and let x be

any site of
−→
Λ .

(i) Show that

pb
H(
−→
Λ ;x) 6 ps

H(
−→
Λ ;x) and pb

T (
−→
Λ ;x) 6 ps

T (
−→
Λ ;x).

(ii) Suppose that
−→
Λ has maximal in-degree ∆in < ∞. Bound ps

H(
−→
Λ ;x) away from

1 by a function of pb
H(
−→
Λ ;x) and ∆in.

(iii) Suppose pb
H(
−→
Λ ;x) < 1/10. Does it follow that ps

H(
−→
Λ ;x) < 1?

2 Consider bond percolation on Z2 with probability p.

(i) Show that if p < 1/2 then there is a constant a = a(p) > 0 such that

Pp

(|C0| > n
)

6 exp(−an)

for all n > 2.

(ii) Deduce from the result in (i) that if p > 1/2 then there is a constant b = b(p) > 0
such that

Pp

(
n 6 |C0| < ∞)

6 exp(−b
√

n)

for all n > 1.

[The results you use should be stated precisely.]

3 (i) Prove a 0-1 law for translation-invariant events in a translation-invariant site
percolation measure.

(ii) Let Λ be a connected and locally finite infinite unoriented graph, which is
amenable and of finite type. Let Pp be a translation-invariant independent site percolation
measure on Λ. Write Ik for the event that there are precisely k infinite open clusters.
Sketch a proof of the result that Pp(I0) = 1 or Pp(I1) = 1. Is this true if Pp is a k-
independent translation-invariant site percolation measure?

(iii) Deduce from the result in (ii) that for bond percolation on Z2 we have
θ(1/2) = 0.

[The terms you use should be defined precisely.]
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4 Replace every second lattice point of the honeycomb lattice by a triangle to obtain
a cubic plane lattice Λ whose faces are congruent regular triangles and congruent convex
enneagons (9-gons) with equal sides (thus every triangle is adjacent to three enneagons,
and every enneagon adjacent to three triangles and six enneagons).

(i) Sketch a proof of the relation pb
c(Λ) + pb

c(Λ
∗) = 1, where Λ∗ is the dual of Λ.

(ii) Show that pb
c(Λ) = 1/

√
2.
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