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1 State and prove the Local LYM inequality. State the LYM inequality, and give two
proofs: one using Local LYM and one using maximal chains.

State Sperner’s lemma on antichains, and explain why it follows from the LYM
inequality. Which antichains in P([n]) have size exactly

( n
⌊n/2⌋

)
?

A set system A ⊂ P([n]) has the property that, for any distinct i, j ∈ [n], there is
a member of A that contains i but not j . Show that n 6

( m
⌊m/2⌋

)
, where m = |A| .

2 Let 1 6 r < n/2. State the Erdős-Ko-Rado theorem concerning intersecting families
in [n](r).

Explain why the following statement (*) immediately implies the Erdős-Ko-Rado
theorem:

(*) If A ⊂ [n](r) is intersecting, and C is the initial segment of the lexicographic ordering
on [n](r) with |C| = |A|, then C is also intersecting.

Use (U, V )-compressions to give a direct proof of (*).

3 State and prove the vertex-isoperimetric inequality in the discrete cube (Harper’s
theorem).

What does it mean for a sequence of graphs to form a Lévy family? Prove that the
sequence of discrete cubes (Qn)∞n=1 forms a Lévy family.

[Estimates on binomial coefficients may be quoted without proof, provided that they
are precisely stated.]

For a fixed positive integer d, does the sequence of grids ([n]d)∞n=1 form a Lévy fam-
ily? Justify your answer.

4 State and prove the Frankl-Wilson theorem (on modular intersections).

Let A ⊂ P([n]) be a family of odd-sized sets such that |x∩ y| is even for all distinct
x, y ∈ A. Prove that |A| 6 n.

Now let n be even, and let A ⊂ P([n]) be a family of even-sized sets such that |x∩y|
is even for all distinct x, y ∈ A. Give an example with |A| = 2n/2. Prove that in fact any
such A must satisfy |A| 6 2n/2

[Hint. If |A| > 2n/2, what do we know about the dimension of the linear span of (the
characteristic vectors of) the points of A?]

[Standard facts about linear independence and linear maps may be assumed, provided
that they are clearly stated.]
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