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1 Let Ω be a bounded domain in Rn.

(i) Let F = F (x, z, p) : Ω×R×Rn → R be a smooth function. Derive the Euler-Lagrange
equation satisfied by a critical point u ∈ C2 (Ω) ∩ C1 (Ω) of the functional

F (u) =
∫

Ω
F (x, u,Du).

(ii) Let L be the 2nd order linear differential operator defined by

Lu = aijDiDj u + bjDj u + c u

where aij, bj , c are bounded functions on Ω, c 6 0 in Ω, and aij(x)ζiζj > λ|ζ|2 for some
constant λ > 0 and all x ∈ Ω, ζ ∈ Rn. State and prove the weak maximum principle for L
concerning the maximum and minimum values of a function u ∈ C2 (Ω)∩C0 (Ω) satisfying
Lu = 0 in Ω.

(iii) Give an example to show that the weak maximum principle in (ii) need not hold if
the hypothesis c 6 0 is dropped.

(iv) Suppose now that the function F in (i) is independent of the z variable and is uni-
formly convex in the p variables. Given g : ∂ Ω → R, prove that there is at most one
critical point u ∈ C2 (Ω) of the functional F in (i) such that u = g on ∂ Ω.

(v) In (iv), can the same conclusion be made if the boundedness hypothesis on Ω is
dropped? Justify your answer.
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2 Let Ω be a bounded domain in Rn. Consider the divergence form operator
Lu ≡ Di (aijDju) + qu, where q ∈ L∞ (Ω) and aij are measurable functions satisfying
λ|ζ|2 6 aij(x)ζiζj 6 Λ|ζ|2 for some constants λ,Λ > 0 and all x ∈ Ω, ζ ∈ Rn. Suppose
that q 6 0. Let ψ ∈W 1,2(Ω) and f ∈ L2(Ω) be given. Consider the Dirichlet problem

Lu = f in Ω and u = ψ on ∂ Ω. (⋆)

(i) Define what it means for a function u ∈W 1,2 (Ω) to be a weak solution of (⋆).

(ii) Show that (⋆) has a unique weak solution u ∈W 1,2(Ω).

[If you use a maximum principle, you must prove it.]

(iii) Now suppose additionally that aij = aji for 1 6 i, j 6 n. Find an appropriate func-
tional F of which the Euler-Lagrange equation is Lu = f . Use F and the direct method
of the calculus of variations to establish solvability of (⋆) in W 1,2(Ω), making clear where
in your argument the hypothesis q 6 0 is used.

(iv) Give an example of a uniformly elliptic operator L of the form above (with bounded
coefficients aij , q of your choosing) and functions f , ψ to show that (⋆) need not have a
weak solution in W 1,2(Ω) if we drop the hypothesis q 6 0.

[In any part of the problem, standard theorems in linear functional analysis and Sobolev
space theory may be used without proof provided they are clearly identified.]
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3 Let u ∈ W 1,2
loc (Ω) ∩ L2 (Ω) be a weak solution of the equation Lu = f where

L is the divergence form operator defined by Lu = Di (aijDj u) + bjDj u + cu. Sup-
pose that aij(x)ζiζj > λ|ζ|2 for some constant λ > 0 and all x ∈ Ω, ζ ∈ Rn, and that
aij , bj , c ∈ L∞ (Ω) and f ∈ L2 (Ω).

(i) Show that for any subdomain Ω′ ⊂⊂ Ω,

‖u‖W 1,2 (Ω′) 6 C
(‖u‖L2 (Ω) + ‖f‖L2 (Ω)

)
for some constant C ∈ (0,∞) depending only on n, λ, ‖aij‖L∞ (Ω), ‖bj‖L∞ (Ω), ‖c‖L∞ (Ω)

and dist (Ω′, ∂ Ω).

(ii) For K > 0, let

SK = {u ∈ W 1,2
loc (Ω) ∩ L2 (Ω) : Lu = f weakly in Ω and ‖u‖L2 (Ω) 6 K}.

If {uk} is a sequence in SK , prove that there is a subsequence {uk′} and a function u ∈ SK

such that uk′ → u in W 1,2 (Ω′) for every subdomain Ω′ ⊂⊂ Ω.

[Standard theorems in linear functional analysis and Sobolev space theory may be used
without proof provided they are clearly identified.]
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4 Let Ω be a domain in Rn, f ∈ L2 (Ω) and u ∈ W 1,2 (Ω) be a weak solution of
∆u = f in Ω.

(i) Prove that u ∈W 2,2
loc (Ω) and that for any subdomain Ω′ ⊂⊂ Ω,

‖u‖W 2,2 (Ω′) 6 C
(‖u‖W 1,2 (Ω) + ‖f‖L2 (Ω)

)
where C ∈ (0,∞) is a constant depending only on n and dist (Ω′, ∂ Ω).

(ii) Suppose now that Ω is the half-ball B+
1 = B1(0) ∩ {xn > 0}, and that there exists

ψ ∈ W 2,2 (B+
1 ) such that u − ψ ∈ W 1,2

0 (B+
1 ). Prove that u ∈ W 2,2 (B+

1/2), where
B+

1/2 = B1/2(0) ∩ {xn > 0}, and that

‖u‖W 2,2 (B+
1/2

) 6 C
(
‖u‖W 1,2(B+

1 ) + ‖f‖L2(B+
1 ) + ‖ψ‖W 2,2 (B+

1 )

)
for some constant C ∈ (0,∞) depending only on n.

[You need not prove the “difference quotient lemmas.”]
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5 (i) State and prove the mean value properties for a C2 harmonic function on a
domain in Rn.

(ii) State and prove the Harnack inequality for a non-negative C2 harmonic function on a
domain in Rn.

(iii) Let u ∈ C2(Rn) be a bounded function. If u is harmonic in Rn, prove that u must
be constant.

(iv) Recall that the Bernstein theorem for minimal graphs says that if 1 6 n 6 7, and if
u ∈ C2 (Rn) is a solution of the minimal surface equation

Di

(
Di u√

1 + |Du|2

)
= 0

on Rn, then u is an affine function. Use the Bernstein theorem to prove that if 1 6 n 6 7
and u ∈ C2 (Rn) solves

Di

(
Di u√

1 + |Du|2

)
= κ

for some constant κ, then u is an affine function.

Part III, Paper 12



7

6 Let F : Rn → R be a C2 function with bounded second derivatives. Suppose
that F is uniformly convex on Rn, and that there exists a number α ∈ (0,∞) such that
F (p) > α|p|2 for all p ∈ Rn. Let Ω be a bounded domain in Rn, and let

F(u) =
∫

Ω
F (Du).

(i) Show that F(u) <∞ for every u ∈W 1,2 (Ω).

(ii) Prove that the functional F is weakly lower semi-continuous on W 1,2 (Ω).

(iii) Let ψ ∈W 1,2 (Ω) be given, and define Cψ = {u ∈W 1,2 (Ω) : u−ψ ∈W 1,2
0 (Ω)}. Prove

that there exists a function u ∈ Cψ such that

F(u) = inf
v∈Cψ

F(v).

(iv) Stating any required additional hypotheses on F , and quoting the relevant interme-
diate theorems without proof, briefly explain how to obtain interior C1,β regularity of u
for some β ∈ (0, 1).

[In any part of the problem, standard theorems in linear functional analysis and Sobolev
space theory may be used without proof provided they are clearly identified.]
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