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1 Explain why the series

ε1(z) =
∑

n∈ Z \{0}

(
1

z − n
+

1
n

)
+

1
z

and εk(z) =
∑
n∈ Z

1
(z − n)k

for k = 2, 3, 4, . . .

define meromorphic functions on the complex plane. Show carefully that εk(z) = ϕk(e2πiz)
for some rational function φk and find the functions ϕ1, ϕ2 explicitly.

Find the Laurent series for ε1 on the annulus {z : 0 < |z| < 1} , expressing the
coefficients in terms of the Riemann ζ-function.

2 Let ρ denote the hyperbolic metric on the unit disc D.

For which sequences of points (zn) in D is there a holomorphic function f : D → C
with zeros at the points zn and nowhere else? Justify your answer briefly.

Show that there is a bounded holomorphic function f : D → C with zeros at the
points zn and nowhere else if and only if∑

exp(−ρ(0, zn)) < ∞ .

Prove that
log

1 + t

1− t
> 2t for t ∈ [0, 1) .

By setting t = e−ρ(w,zn), or otherwise, show that

|B(w)| 6 exp
(
−2

∑
e−ρ(w,zn)

)
for any point w ∈ D and for B a Blaschke product with zeros (zn).

3 State and prove Runge’s Theorem.

Show that we can find polynomials Pn for which (Pn(z)) converges at each point of
C and

Pn(z) →


+1 for Im(z) > 0;
0 for Im(z) = 0;
−1 for Im(z) < 0.

Let K be a compact subset of the plane domain Ω. Let K∗ be the set of points
w ∈ Ω for which

|f(w)| 6 sup{|f(z)| : z ∈ K}
for every holomorphic function f : Ω → C. Prove that K∗ is the union of K with those com-
ponents of P\K that lie entirely within Ω.
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4 State and prove the Schwarz – Pick lemma.

Let F be the set of all holomorphic functions

f : D → A = {z ∈ C : e−1 < |z| < e}

from the unit disc D into the annulus A with f(0) = 1. Explain why there is a func-
tion f ∈ F for which |f ′(0)| is maximal. Find such a function explicitly. Is it unique?

5 Let G be the set of Möbius transformations

z 7→ uz + v

vz + u

where u, v are Gaussian integers with |u|2−|v|2 = 1 and u+v−1 ∈ 2 Z[i] . Explain briefly
why this is a group of hyperbolic isometries of the unit disc and acts discontinuously on
that disc.

Show that the origin is only fixed by the identity transformation in G . Find the
Dirichlet region for this group centred on 0 and justify your answer.
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