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SECTION I

1 Suppose that f is a bounded convex function on the open unit ball U of a real
normed space (E, ‖.‖), and that x ∈ U .

(a) Show that f is continuous.

(b) Explain briefly why the directional derivative

Dy(f)(x) = lim
λց0

(
f(x + λy)− f(x)

λ

)
exists, for each y ∈ E.

(c) Show that Dy(f)(x) is a sublinear function of y.

(d) Show that there exists a linear functional l on E such that f(x+z) > f(x)+ l(z)
for all z for which x + z ∈ U .

(e) Show that l is continuous.

(f) Suppose further that P is a probability measure on the Borel sets of U , and that
φ(x) = E(φ) for each φ ∈ E′ (x is the barycentre of P). Show that E(f) > f(x) (Jensen’s
Inequality).

2 What is a completely regular Hausdorff topological space?

Suppose that (X, τ) is a completely regular Hausdorff topological space. Let Cb(X)
be the space of continuous bounded real-valued functions on X, with the supremum
norm, and with dual Cb(X)′. Show that the evaluation mapping δ : X → Cb(X)′ is a
homeomorphism, when Cb(X)′ is given the weak* topology.

Explain how this is used to define the Stone-Čech compactification βX of X. Show
that C(βX), with the supremum norm, is isometrically isomorphic to Cb(X). Show that if
f is a continuous mapping of X into a compact Hausdorff space K then there is a unique
continuous extension from βX into K.

[You should state any properties of weak* topologies that you need, but may use
them without proof.]

Show that X is open in βX if and only if X is locally compact.

Show that if τ is the discrete topology and A ⊆ βX then Ā is open.
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3 Let C(K) be the Banach space of continuous real-valued functions on a compact
Hausdorff space K.

(a) Show that a positive linear functional φ on C(K) is continuous, and that
‖φ‖ = φ(1).

(b) Show that if φ is continuous and ‖φ‖ = φ(1) then φ is positive.

(c) Show that if φ is a continuous linear functional on C(K) then φ = φ+ − φ−,
where φ+ and φ− are positive linear functionals with ‖φ‖ = ‖φ+‖+ ‖φ−‖.

(d) Suppose that φ is a continuous linear functional on the complex Banach space
CC(K) of continuous complex-valued functions on a compact Hausdorff space K, which
satisfies φ(1) = 1 = ‖φ‖. Show that if g ∈ CC(K) is real-valued then φ(g) is real. [Hint:
consider 1+itg, with t real.]
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SECTION II

4 Suppose that B is a unital Banach algebra, and that A is a closed unital subalgebra
of B. Let

G(A) = {a ∈ A : a has an inverse in A}
GB(A) = {a ∈ A : a has an inverse in B} .

(a) Show that G(A) ⊆ GB(A), and give an example to show that the inclusion can
be strict.

(b) Show that 1 is an interior point of G(A).

(c) Show that G(A) and GB(A) are open subsets of A .

(d) Suppose that a, b ∈ A and that 1− ab ∈ G(A). Show that 1− ba ∈ G(A).

(e) Suppose that an ∈ G(A), an → a and that a 6∈ G(A). Show that
∥∥a−1

n

∥∥ →∞ as
n →∞ . Show that a 6∈ GB(A).

(f) Show that G(A) is the union of some of the connected components of GB(A).

5 (a) State the Gelfand-Mazur theorem.

(b) Suppose that A is a commutative unital Banach algebra. Show that every ideal
in A is contained in a maximal proper ideal.

(c) What is a character on A? Show that there is a natural bijection from the set
ΦA of characters on A onto the set MA of maximal ideals.

(d) Establish how ΦA is used to determine the spectrum of an element of A.

(e) Let A = C1[0, 1] be the Banach space of continuous functions on [0, 1] with
continuous derivative (one-sided at 0 and 1), under the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞. Show
that A is a unital commutative Banach algebra, under pointwise multiplication. Determine
MA.
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