UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2009 9:00 am to 12:00 pm

PAPER 10

INTRODUCTION TO FUNCTIONAL ANALYSIS

Attempt no more than **THREE** questions, and not more than **TWO** from either section. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1 Suppose that f is a bounded convex function on the open unit ball U of a real normed space $(E, \|.\|)$, and that $x \in U$.

- (a) Show that f is continuous.
- (b) Explain briefly why the directional derivative

$$D_y(f)(x) = \lim_{\lambda \searrow 0} \left(\frac{f(x + \lambda y) - f(x)}{\lambda} \right)$$

exists, for each $y \in E$.

(c) Show that $D_y(f)(x)$ is a sublinear function of y.

(d) Show that there exists a linear functional l on E such that $f(x+z) \ge f(x)+l(z)$ for all z for which $x+z \in U$.

(e) Show that l is continuous.

(f) Suppose further that **P** is a probability measure on the Borel sets of U, and that $\phi(x) = \mathbf{E}(\phi)$ for each $\phi \in E'$ (x is the *barycentre* of **P**). Show that $\mathbf{E}(f) \ge f(x)$ (Jensen's Inequality).

2 What is a *completely regular* Hausdorff topological space?

Suppose that (X, τ) is a completely regular Hausdorff topological space. Let $C_b(X)$ be the space of continuous bounded real-valued functions on X, with the supremum norm, and with dual $C_b(X)'$. Show that the evaluation mapping $\delta : X \to C_b(X)'$ is a homeomorphism, when $C_b(X)'$ is given the weak* topology.

Explain how this is used to define the *Stone-Čech* compactification βX of X. Show that $C(\beta X)$, with the supremum norm, is isometrically isomorphic to $C_b(X)$. Show that if f is a continuous mapping of X into a compact Hausdorff space K then there is a unique continuous extension from βX into K.

[You should state any properties of weak* topologies that you need, but may use them without proof.]

Show that X is open in βX if and only if X is locally compact.

Show that if τ is the discrete topology and $A \subseteq \beta X$ then \overline{A} is open.

UNIVERSITY OF

3 Let C(K) be the Banach space of continuous real-valued functions on a compact Hausdorff space K.

3

(a) Show that a positive linear functional ϕ on C(K) is continuous, and that $\|\phi\| = \phi(1)$.

(b) Show that if ϕ is continuous and $\|\phi\| = \phi(1)$ then ϕ is positive.

(c) Show that if ϕ is a continuous linear functional on C(K) then $\phi = \phi^+ - \phi^-$, where ϕ^+ and ϕ^- are positive linear functionals with $\|\phi\| = \|\phi^+\| + \|\phi^-\|$.

(d) Suppose that ϕ is a continuous linear functional on the complex Banach space $C_{\mathbf{C}}(K)$ of continuous complex-valued functions on a compact Hausdorff space K, which satisfies $\phi(1) = 1 = \|\phi\|$. Show that if $g \in C_{\mathbf{C}}(K)$ is real-valued then $\phi(g)$ is real. [Hint: consider 1+itg, with t real.]

SECTION II

4 Suppose that B is a unital Banach algebra, and that A is a closed unital subalgebra of B. Let

 $G(A) = \{a \in A : a \text{ has an inverse in } A\}$ $G_B(A) = \{a \in A : a \text{ has an inverse in } B\}.$

(a) Show that $G(A) \subseteq G_B(A)$, and give an example to show that the inclusion can be strict.

(b) Show that 1 is an interior point of G(A).

(c) Show that G(A) and $G_B(A)$ are open subsets of A.

(d) Suppose that $a, b \in A$ and that $1 - ab \in G(A)$. Show that $1 - ba \in G(A)$.

(e) Suppose that $a_n \in G(A)$, $a_n \to a$ and that $a \notin G(A)$. Show that $||a_n^{-1}|| \to \infty$ as $n \to \infty$. Show that $a \notin G_B(A)$.

(f) Show that G(A) is the union of some of the connected components of $G_B(A)$.

5 (a) State the Gelfand-Mazur theorem.

(b) Suppose that A is a commutative unital Banach algebra. Show that every ideal in A is contained in a maximal proper ideal.

(c) What is a *character* on A? Show that there is a natural bijection from the set Φ_A of characters on A onto the set \mathcal{M}_A of maximal ideals.

(d) Establish how Φ_A is used to determine the spectrum of an element of A.

(e) Let $A = C^1[0,1]$ be the Banach space of continuous functions on [0,1] with continuous derivative (one-sided at 0 and 1), under the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Show that A is a unital commutative Banach algebra, under pointwise multiplication. Determine \mathcal{M}_A .

END OF PAPER