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1 Define a topological group and give, with proof, necessary and sufficient conditions in
terms of neighbourhood bases for a topology on a group to give a topological group.

Which of the following statements are always true for a topological group G and which
may be false? In each case give a proof or counterexample.

(a) A closed subgroup is open.

(b) An open subgroup is closed.

(c) The connected component of the identity is a subgroup which is both open and normal.

(d) If G is Hausdorff, then G is locally compact. (Hint. Consider l2 or Q.)

(e) If G is locally compact, it has a σ-compact open subgroup.

(f) If G is not Hausdorff it must be compact.

(g) If G has a left invariant metric (that is to say G has a left invariant metric which induces
the topology) then it has a right invariant metric. (You may quote major theorems.)

(h) If G has a left invariant metric d and a right invariant metric d′, then we can find a K > 0
such that K−1d′(x, y) 6 d(x, y) 6 Kd′(x, y).

2 Show that any compactly generated metrisable group has a Haar measure.

[You may assume the existence of a countable set of functions with the properties required by
your proof.]

3 Let G be a locally compact Abelian Hausdorff group. Show that the multiplicative linear
functionals on L1(G) with convolution may be bijectively identified with maps f → f̂(χ) where
the χ are the characters of G.

Show that, if we give the group Ĝ of characters the appropriate Gelfand topology, that
topology is generated by the neighbourhood basis

{χ ∈ Ĝ : |χ(x)− γ(x)| < ε for all x ∈ K}

with K compact in G and ε > 0.

4 Let G be a locally compact Abelian Hausdorff group. State Bochner’s theorem and use
it to prove an inversion formula of the form

f(x) =
∫

Ĝ
f̂(χ)〈x, χ〉 dmĜ(χ)

for an appropriate measure and a reasonably wide class of f (to be specified).

Use your result to extend the notion of a Fourier transform to a linear isometry

F : L2(G)→ L2(Ĝ).
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