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1 Fluid is injected into a deep saturated horizontal confined porous layer of thickness
w, permeability k and porosity φ from a line source x = 0 . The injected fluid has density
ρ + ∆ρ while the original fluid in the porous layer has density ρ, and both fluids have
the same viscosity µ . The lower boundary of the layer consists of a thin low permeability
layer of rock with permeability λ < k and thickness b . Beneath this layer, there is a region
of much higher permeability, so that fluid can migrate across the thin layer to a region
with constant pressure, and the cross-layer flow is associated with the excess hydrostatic
pressure of the injected fluid on the low permeability layer.

(a) Derive the equation to describe the shape of the advancing interface between the
two fluids:

∂h

∂t
=

k∆ρg
φµ

∂

∂x

(
h
∂h

∂x

)
− λk∆ρg

µb
h .

(b) If a finite volume of fluid V is released into the aquifer, find a solution of the above
equation which describes how the volume and the lateral extent of the current evolve with
time.

[Hint : transform the equation from the variable h(x, t) to H(x, t) = h exp (Ω t), and then
rescale time.]

(c) Use the solution to calculate the maximum lateral extent of the current.

(d) Also, as the current advances, calculate the lateral position at which the depth of
the current is instantaneously constant, and hence find an expression for the locus of the
region of rock invaded by the injected fluid.
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2 Fluid is injected into a porous layer composed of two parallel layers of different
permeability, k1 and k2 , and porosity φ from a point x = 0 to a point x = L . The layers
are bounded by impermeable seal rock above and below and are in very poor contact with
each other.

(a) If a pressure difference ∆P is imposed between the points x = 0 and x = L ,
calculate the time of arrival ta of the injected fluid at the distal point x = L , where x is
the along-layer coordinate, and explain how the flux of injected fluid at x = L varies with
time for t > ta . In particular, at what time ts does the injected fluid emerge from the
lower permeability layer?

(b) In the next pair of wells, in order to reduce the flow of the injected fluid at the point
x = L , a slug of polymer is added to the injected fluid, over a time ∆t , as soon as some
of the fluid being injected is recorded as arriving at the outflow well, x = L . The polymer
is designed to activate at time τ after entering the rock, and at this time it increases the
viscosity of the fluid by a factor λ . Develop a model to describe how the flow of injected
fluid changes with time, for t > τ , and in particular to describe the partitioning of the
inflow fluid between the high and low permeability layers, and the variation with time of
the overall flux.

(c) Determine whether there are conditions under which this strategy leads to a greater
flux of original fluid being produced from the reservoir at a given time after the start of
the injection.

3 Radioactive fluid migrates through a laterally extensive aquifer with permeability
k(z) = k0z(h− z) where z denotes the depth in the aquifer.

(a) Derive an equation to describe the dispersion of the radioactive tracer as it spreads
through the rock, if a line source injects the fluid at a constant rate Q per unit length of
the well. In deriving the equation, you will need to calculate the dispersion coefficient.
You may take the molecular diffusion of radioactive material to be D.

(b) Explain how a localized release of radioactive material will spread over time.

(c) If now the rock absorbs some of the radiation at a rate λ times the concentration
in the fluid, re-derive the governing equation for the conservation of the radiation, and
calculate the steady profile of radiation in the water, and hence the profile of adsorbed
radiation in the formation.

[Hint: You may find it useful to know that∫ 1

0

(
z3

6
− z4

24
− z2

12

) (
z − z2 − 6

)
dz = 0.3525 . ]
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4 (a) Briefly discuss the central assumptions of k − ε turbulence models.

(b) Consider a statistically stationary 1-D flow with no turbulent production, and a
steady mean velocity U0 > 0 . The k − ε equations become

Uo
dk

dx
=

d

dx

(
νT
σk

dk

dx

)
− ε ,

Uo
dε

dx
=

d

dx

(
νT
σε

dε

dx

)
− Cε2

ε2

k
.

These equations have a front solution between non-turbulent flow (k = ε = 0 for x 6 0)
and turbulent flow, which for small positive x has form

k = k0

(
x

δ0

)p
, ε = ε0

(
x

δ0

)q
, δ0 =

k
3/2
0

ε0
,

where p, q, k0, ε0 and δ0 are positive constants. Remembering that νT = Cµk
2/ε by

assumption, show that
q = 2p− 1 ,

U0 =
Cµ(2p− 1) k1/2

0

σε
,

p =
1

2− σ
,

where σ = σε/σk.

(c) For small x, express k , ε , the integral length scale of the turbulence L = k3/2/ε ,
and the turbulent vorticity ω = ε/k in terms of σ .

(d) Discuss what the dominant physical balance is for small x.

(e) Hence show that the model is self-consistent when σk < σε < 1.5σk .

(f) Finally, show that the gradient of the turbulent diffusivity at x = 0+ can be
expressed in terms of the steady mean velocity as(

dνT
dx

)
x=0+

= (2σk − σε)U0 .
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5 (a) Ignoring boundary contributions, write down evolution equations for the total
kinetic energy of a flow, the total potential energy of the flow, the background potential
energy of a flow, and the available potential energy of a flow.

(b) Hence define the concepts of instantaneous and cumulative “mixing efficiency” in
the context of stratified turbulent mixing.

(c) Consider a model for forced stratified turbulent mixing, where the buoyancy flux
B, the dissipation and the large-scale forcing are assumed to depend on the total kinetic
energy K , and hence

d

dt
K = F − B − ε =

K1/2 U2
0

Lf
− K1/2 U2

0

Lρ
− K3/2

Lv
,

where Lf , Lρ and Lv are appropriate characteristic integral length scales of the forcing,
the density and velocity fluctuations respectively, and U0 is an appropriate velocity scale
of the forcing. Derive the time-dependent evolution of the kinetic energy.

(c) Assuming Lf < Lρ, show that the kinetic energy approaches a steady state,

K∞ =
Lv
LfLρ

(Lρ − Lf )U2
0 ,

discussing the cases of “large” and “small” initial kinetic energies separately.

(d) Assuming that the exchange between the potential energy and the internal energy
reservoirs is negligible, and also that the available potential energy is negligible, calculate
the time-dependent instantaneous mixing efficiency and (in the limit of large time) the
cumulative mixing efficiency.

(e) Discuss the two limiting cases Lv � Lρ and Lv � Lρ , paying particular attention
to physical interpretation.
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6 (a) Define the concept of “pure plume balance” for plumes with non-zero source volume
flux.

(b) Consider a room with cross-sectional area Ac and height H. Assume there is also a
point-source turbulent plume with buoyancy flux πFS at z = 0 , and that the flow develops
as a “filling box”. Derive an expression for the time-dependent location of the “first front”,
i.e. the location of the lowest layer of fluid which has passed through the plume.

(c) Now assume that the plume has finite source volume flux πQS > 0 and specific
momentum flux πMs > 0 , and an opening to the exterior at z = h for 0 6 h 6 H . Derive
differential equations for the evolution of the first front both above and below the height
z = h , under the assumption that the plume is in pure plume balance at the source.

(d) Show that the first front reaches the floor z = 0 in finite time only if the opening
to the exterior is at the floor z = 0 , and calculate this arrival time.

(e) Finally, consider a room with openings with area AH at z = H, and area A0 at
z = 0. Derive a condition for the entire room to be filled with fluid cycled through the
plume in the limit of large time.
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