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1 A twisted nematic display device is constructed from two plates parallel to the
xy plane, one intersecting z = 0, the second at z = L, with a nematic liquid crystal
in between. Let the director n be described by polar angles θ(x, y, z) and φ(x, y, z), so
n = [cos θ cosφ, cos θ sinφ, sin θ]. Assume the surfaces of the plates touching the nematic
are treated so the boundary conditions on the director are φ(x, y, 0) = 0, φ(x, y, L) = π/2,
forcing it to undergo a rotation of π/2 from the bottom plate to the top plate. In the
presence of an electric field the director will be a minimiser of the Franck elastic energy

F =
1
2

∫
d3x

{
K1(∇ · n)2 +K2[n · (∇× n)]2 +K3[n× (∇× n)]2 − ε

8π
(E · n)2

}
,

where Ki are the elastic constants. and ε is the dielectric constant anisotropy. Explain
the physical meaning of the three elastic terms in this functional.

Suppose the electric field is E = (0, 0, E0), normal to the plates. Show that the free
energy density has the form

1
2
f(θ)

(
dθ

dz

)2

+
1
2
g(θ)

(
dφ

dz

)2

− εE2

8π
sin2 θ , (1)

and find f(θ) and g(θ).

Find the variational (Euler-Lagrange) equations corresponding to (1), and verify
that in the absence of the field the twisted profile θ = 0, φ(z) = πz/2L is a solution.

Assuming that near the onset of a field-induced transition the angle θ is everywhere
small, and vanishes on the top and bottom plates, one expects it to take the form
θ(z) ' θ0 sin(πz/L). Use this trial solution in the Euler-Lagrange equations to show
that the critical voltage for the onset of an instability is

Vc = 2π3/2

[
K1 +

1
4

(K3 − 2K2)
]1/2

ε−1/2 .

The resulting director profile is useful in display technology. Practical devices have
plates which are crossed polarizers, and a mirror sits beneath the bottom plate. L is
taken much greater than the wavelength of light, so the plane of polarisation adiabatically
follows the director field. Explain how the application of a voltage allows this display
technology to function.
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2 Consider the Langevin equation for a single particle of mass m, drag coefficient γ
and random forcing A′(t),

m
du
dt

= −γu + A′(t) . (1)

Assume the random force has zero mean and a variance < A′(t)·A′(t′) > that is a function
φ(|t − t′|) decaying very rapidly with t − t′, satisfying

∫∞
−∞dyφ(y) = m2τ . If u(0) = u0

and r(0) = r0 are the initial velocity and position, solve (1) to obtain U ≡ u(t)− u0e−ζt

formally in terms of A, where ζ = γ/m and A = A′/m. From this deduce the variance
〈U2〉 and thereby determine τ from equipartition.

In order to evaluate higher moments of U, assume that the random process A(t) is
Gaussian, so

〈A(t1)A(t2) · · ·A(t2n+1)〉 = 0

〈A(t1)A(t2) · · ·A(t2n)〉 =
∑

all pairs

〈A(ti)A(tj)〉〈A(tk)A(tl)〉 · · ·

Considering carefully the number of pairs in the above sum, show that the moments satisfy

〈U2n+1〉 = 0

〈U2n〉 = (2n− 1)!!〈U2〉n

where (2n− 1)!! = (2n− 1)(2n− 3) . . . 1, and hence that the probability distribution of U
is Gaussian,

W (u, t; u0) =
[

m

2πkBT (1− e−2ζt)

]3/2
exp

[
− m|u− u0e−ζt|2

2kBT (1− e−2ζt)

]
.

Integrate the equation for u to obtain the position vector r. Find the mean and
variance of r. Examine the short and long-time behaviour and explain the distinction
between the two.
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3 Consider a semi-infinite elastic filament lying along the positive x-axis. The
approximate equation of motion for small-amplitude perturbations y = h(x, t) to the
straight equilibrium is

ζht = −Ahxxxx ,

where ζ is the perpendicular drag coefficient and A is the bending modulus. Suppose
the filament end at the origin is forced up and down so that the boundary conditions are
h(0, t) = h0 cos(ωt) and hxx(0, t) = 0, while, as x→∞, h and its derivatives vanish.

(a) Using dimensional analysis, find a characteristic length scale `(ω) for this
problem in terms of A, ζ, and ω.

(b) Show that the solution to this boundary-value problem can be obtained by
separation of variables,

h(x, t) = h0<
{

eiωtF (η)
}
,

where η = x/`(ω). Find the ode obeyed by F .

(c) Find the two solutions of the characteristic equation that satisfy the boundary
conditions on F at x = ∞, and the amplitudes of those terms that satisfy the boundary
conditions at x = 0. Show therefore that h(x, t) is a superposition of two travelling waves
which decay with increasing x, one moving to the left, and one to the right. Which one
dominates?
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4 A wormlike polymer of contour length L is subject to an external force f acting at
its two ends, directed along the z axis. The effective energy is

E =
1
2
A

∫ L

0

ds κ2 − fz ,

where A is the bending modulus, z is the end-to-end extension, and ds is the differential
of arclength s. Consider the high-force limit, where the chain’s configuration deviates only
slightly from a straight line. Then the tangent vector t̂ fluctuates only slightly around
ẑ, the unit vector in the z direction. If we take tx and ty as independent fluctuating
components, the constraint |̂t| = 1 shows that tz deviates from unity quadratically in the
vector t⊥ ≡ (tx, ty). Show that to quadratic order the energy is

E =
1
2

∫
ds
[
A(∂st⊥)2 + ft2

⊥
]
− fL .

Use equipartition to find the thermal average 〈t2
⊥〉, being careful to account for

the two independent components of t⊥. From this, show that in this high-force limit the
force-extension relation takes the form

z

L
= 1 −

√
kBT

4Lpf
.

Compare this asymptotic result with that for the freely-jointed chain composed of N links,
each of length b.

Calculate the correlation function C(y) = 〈(1/L)
∫ L
0
dst⊥(s) · t⊥(s + r)〉 of the

tangent vector and thereby find the correlation length ξ, the length scale for decay of
C(y).
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Paper 83


	Rubric
	1
	2
	3
	4

