
MATHEMATICAL TRIPOS Part III
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PAPER 81

FUNDAMENTALS OF ATMOSPHERE–OCEAN DYNAMICS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

Clarity and explicitness of reasoning will attract more credit
than perfection of computational detail.

(x, y, z) denotes right-handed Cartesian coordinates and (u, v, w) the corresponding
velocity components; t is time; the gravitational acceleration is (0, 0,−g) where g is
a positive constant. The fluid is always incompressible. ‘Ideal fluid’ always means
that buoyancy diffusion can be neglected where relevant, as well as viscosity. N
denotes the buoyancy frequency of a stratified fluid.
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1 State what is meant by the Boussinesq approximation for a continuously stratified
ideal fluid, and what is meant by the ‘buoyancy acceleration’. Define the buoyancy
frequency N(z).

Write down the nonlinear Boussinesq momentum, buoyancy and mass-conservation
equations for a non-rotating reference frame. Show from the equations that, provided the
pressure field satisfies a certain condition, which you should specify,

∂ū

∂t
= − ∂

∂y

(
uv

)
− ∂

∂z

(
uw

)
where the overbars denote an x-average whose definition you should also specify.

Two-dimensional internal gravity waves are generated at a lower boundary z = 0
by forcing the vertical velocity field w(x, z, t) to satisfy

w(x, 0, t) = a exp(ikx− iωt) (real part understood) (∗)

where a, k and ω are real constants, and where a is sufficiently small for linearized theory
to apply. Show from the linearized equations for two-dimensional motion that w(x, z, t)
satisfies

∇2wtt +N2wxx = 0 , (†)

where suffixes denote partial differentiation. Is this equation valid when N varies with z?
When N is constant, with 0 < ω < N , find two solutions of (†) that satisfy the boundary
condition (∗). Explain briefly what is meant by the radiation condition, and show how it
selects just one out of these two solutions.

Justify the radiation condition by making a an appropriate function of time in (∗).
Assume that a vanishes for all negative times but grows slowly toward a small constant
value a∞. Introduce a small parameter µ� 1 and rescaled variables T = µt and Z = µz,
writing a = a(T ) in (∗). Where a occurs in the solution for the wavefield, make it a
function of (Z, T ) and show that (†) is satisfied correct to first order in µ provided that
a(Z, T ) satisfies an equation of the form

∂a

∂T
+ b

∂a

∂Z
= 0

where b is a constant to be determined, and where the symbols ∂a/∂T and ∂a/∂Z have a
meaning that you should explain carefully. Explain how the radiation condition is related
to the sign of b.

Use the above to find an expression involving a(Z, T ) that describes, correct to
O(a2), how the mean flow ū evolves as the waves propagate away from z = 0. Explain
briefly why the mean-flow changes would become an essential part of the energy budget if
the system were to be viewed in a moving frame of reference, translating in the x direction
with velocity ω/k.
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2 By writing down the relevant equations in Cartesian components, demonstrate the
partial analogy between stratified and rotating ideal-fluid flow. In particular, show that
in Cartesian components the equations for stratified, non-rotating motion of an ideal
fluid are mathematically identical to the equations for a non-stratified, rotating ideal
fluid, under certain assumptions to be specified. Carefully indicate which quantity in
the stratified system corresponds to which in the rotating system. Explain briefly why
a free-surface, zero-pressure boundary condition would destroy the analogy. Show that
the analogy remains valid if prescribed body forces are introduced into both problems,
provided that the forces act in certain directions to be determined.

Now restrict attention to the stratified problem. Consider a steady, horizontally-
directed weak body force of the form F =

(
F (x, z), 0, 0)

)
with

F (x, z) = f ′(x) exp(imz) (real part understood) (∗)
where m is a positive constant and where f ′(x) is real valued, taking positive values
in a finite interval |x| < x1 and zero values elsewhere; f(x) is defined to be zero for
x < −x1 and to take a constant positive value ε for x > x1. Assume that ε is
small enough that the resulting fluid motion satisfies the equations linearized about rest.
Show that the linearized equations have steady solutions with x-independent velocity field
u =

(
u(z), 0, 0

)
and pressure-anomaly field

p ∝ f(x) exp(imz) + b(z) (†)
where b(z) is an arbitrary function.

Briefly consider a time-dependent version of the same problem, in which the force
F is brought to its steady value (∗) from zero at some finite time in the past. Before that
time, all the disturbance fields are zero everywhere. Do not solve this problem in detail,
but use your knowledge of its general properties. Show that for fixed x the pressure-
anomaly field p must, at sufficiently large time t, be given by (†) with a particular choice
of b(z) to be determined. How large is “sufficiently large”?

Now consider another stratified problem in which F =
(
F (x, y), 0, 0)

)
where, with

the same f(x) as before,

F (x, y) = f ′(x) exp(i`y) (real part understood)

and where ` is another positive constant. Show that the linearized equations can no longer
be satisfied by any steady, x-independent velocity field, or indeed by any steady velocity
field whatever. Show that they do, however, allow unsteady velocity fields of the form

u = (−tφy, tφx, 0)

where suffixes denote partial differentiation and where φ = φ(x, y), satisfying

φxx + φyy = −i `f ′(x) exp(i`y) .

In the limiting case x1 → 0, show that

φ = 1
2 iε exp(i`y) exp(−`|x|) .

Would you expect the corresponding unstratified, rotating problem to have similar
solutions, evanescing with |x|? Give reasons.

[You may quote without proof any standard theorems on rotating flow in the limit of small
Rossby number.]
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3 Write down the shallow-water momentum and mass-conservation equations in a
frame of reference rotating with constant angular velocity (0, 0, 1

2f). Allow for a sloping
bottom boundary z = b(x, y), taking care to distinguish between the layer depth h(x, y, t)
and the free-surface elevation ζ(x, y, t). Derive the vertical component of the vorticity
equation from the momentum equations, and show that Rossby’s potential vorticity qa/h
is an exact material invariant, i.e. that

DH

Dt

(qa
h

)
= 0 , (∗)

where qa = f + vx − uy and where DH/Dt = ∂/∂t + uH ·∇H , with uH = (u, v, 0) and
∇H = (∂/∂x, ∂/∂y, 0) .

Using the standard order-of-magnitude arguments, carefully derive the quasi-geo-
strophic counterpart to (∗), expressing everything in terms of an appropriate streamfunc-
tion ψ(x, y, t) and carefully explaining the assumptions made. What types of wavemotion
described by the full equations are (a) excluded from, and (b) included in, the dynamics
described by the quasi-geostrophic equations?

The fluid layer is confined to a channel 0 < y < L with a sloping bottom b = εy,
where the channel width L is not much greater than the Rossby deformation length LD

and where ε is a positive constant, small enough for consistency with the assumptions
of quasi-geostrophic theory. Linearizing about a state of relative rest in which the layer
depth is h00 in mid-channel, find the x-periodic wave solutions that satisfy the boundary
conditions ψ = 0 on y = 0 and y = L.

Sketch the shape of a contour of constant quasi-geostrophic potential vorticity, and
use it to explain carefully how the wave propagation mechanism can be understood in
terms of potential-vorticity advection and inversion.

The layer is now further confined by boundaries x = 0, L, so that it is confined to
a square basin. By using the transformation

ψ̂ = ψ exp( 1
2 iβx/ω) (β = εf/h00)

or otherwise, find the frequencies ω of normal modes of the basin with time dependence
exp(−iωt). Show that in the limit L/LD → 0

ω → βL

2π(m2 + n2)1/2

where m and n are positive integers.
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4 Consider quasi-geostrophic motion of a stratified, rotating, Boussinesq fluid on a
β-plane. You may assume that the motion is governed by the quasi-geostrophic potential-
vorticity equation

DgQ

Dt
= 0 with Q =

[
f0 + βy +

∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂

∂z

(
f2
0

N2

∂ψ

∂z

)]
in the standard notation of the lecture notes, with velocity field

(u, v, w) =
{
−∂ψ
∂y

,
∂ψ

∂x
, − f0

N2

Dg

Dt

(
∂ψ

∂z

)}
.

Write down the definition of the symbol Dg/Dt in terms of ψ, and explain how it
differs from the exact material derivative. Write down the leading-order balances in the
momentum equations — do not justify these — and deduce that the buoyancy-acceleration
anomaly σ is equal to f0∂ψ/∂z.

Let overbars denote averages in the x direction and primes disturbances about such
averages so that, for instance, ψ = ψ̄(y, z) + ψ′(x, y, z, t). Without assuming that the
disturbances have small amplitudes, derive the Taylor identity

∇ · (F,G) = v ′Q′ (∗)

where ∇ is in the yz plane and where (F,G) is defined by

(F,G) =
(
−u′v′, f0

N2
v′σ′

)
. (†)

If furthermore the disturbance amplitude is small, deduce from the linearized potential-
vorticity equation that the quantity A = 1

2Q
′2/Qy then satisfies

∂A
∂t

+ ∇ · (F,G) = 0 . (‡)

Consider a flow with constant N confined between a rigid, flat upper boundary z = H
and a rigid, slightly-undulating lower boundary z = Re{ εH eikx sin(`y)}, where ε, k, `,
and H are real constants and where ε is assumed small enough to permit linearization of
the equations. Take ψ̄ = −ūy where

ū = β/κ2 , κ2 = k2 + `2 + (f0m/N)2

with m = π/H. Show that the linearized equations and boundary conditions admit a
resonantly-growing solution

ψ′ = Re
[
ε eikx sin(`y)

{
B t cos(mz) + C (z −H) sin(mz)

}]
where B = 2ikf0ū2/β and C = N2/(f0m). For this solution evaluate all the quantities
appearing in (∗), (†) and (‡), thereby verifying that (∗) and (‡) are indeed satisfied.

[Show first that u′v′ = 0, that ∂A/∂t ∝ B2, and that the only terms contributing to (∗)
are those ∝ BC.]

Now suppose that the wavemotion takes place in a channel 0 < y < π/` and that
the waves grow to large amplitude and break, causing the mean potential vorticity Q̄ to
be mixed to a uniform value across the channel at all levels. Assume that the resulting
change in ū is a function of y only that vanishes at y = 0, π/`. Find that function and
deduce that the total momentum change is − 1

12β(π/`)2 per unit mass.

END OF PAPER

Paper 81


	Rubric
	1
	2
	3
	4

