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1 Consider a two-step method for ODEs defined by the polynomials

ρ(w) = w2 − (1 + α)w + α and σ(w) =
1
12

(5 + α)w2 +
2
3

(1− α)w − 1
12

(1 + 5α),

where α is a real constant.

(a) Prove that for every α the method is of order p > 3 and that there exists unique value of
α for which the method is of order 4.

(b) We know from the second Dahlquist barrier that the method cannot be A-stable for any
value of α. Prove a stronger statement: for every α for which the method is convergent, its
linear stability domain is necessarily a bounded subset of C.

2 We are given the partial differential equation

∂u

∂t
=
∂2u

∂x2
+ 2κ

∂u

∂x
,

where κ ∈ R, together with initial conditions for t = 0, 0 6 x 6 1, and zero boundary conditions
at x = 0, 1, t > 0.

(a) Prove that the equation is well posed for all values of κ.

(b) The equation is semidiscretized by the method

u′m =
1

(∆x)2
(um−1 − 2um + um+1) +

κ

∆x
(um+1 − um−1), m = 1, . . . ,M,

where ∆x = 1/(M + 1). Using the energy method, or otherwise, prove that the method is
stable.

3 (a) Define algebraic stability of Runge–Kutta methods.

(b) Let b1, . . . , bs > 0 and suppose that the matrix M is positive semidefinite. Prove that the
underlying Runge–Kutta method is algebraically stable.

(c) Show that the two-stage Gauss–Legendre method
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is algebraically stable.
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4 The advection equation

∂u

∂t
=
∂u

∂x
, x ∈ R, t > 0,

given as a Cauchy initial-value problem, is solved by the finite difference method

1
2µ(1 + µ)un+1

m−1 + (1 + µ)(2− µ)un+1
m + 1

2(1− µ)(2− µ)un+1
m+1 = (2− µ)unm + (1 + µ)unm+1

for all m ∈ Z, n > 0, where µ is the (suitably defined) Courant number.

(a) Find the order of the method.

(b) Determine the range of µ for which the method is stable.

5 (a) Let L be a linear differential operator acting on space variables. Stating precisely all
necessary definitions, prove that, subject to positive definiteness of L, the differential equation
Lu = f is the Euler–Lagrange equation of the variational functional I(v) = 〈Lv, v〉 − 2〈f, v〉
and that the weak solution of this differential equation exists and is the unique minimum of I.

(b) Let L = −∇2 in the square [0, 1]2, given with zero boundary conditions. Prove that all
the conditions required in part (a) are satisfied and derive the Ritz equations in a form suitable
for the finite element method.

6 (a) Let A be a symmetric m×m matrix and denote by λ1, . . . , λm its eigenvalues. We define
the spectral abscissa as µ(A) = maxk=1,...,m λk. Prove that (in Euclidean norm)

‖etA‖ 6 etµ(A), t > 0

and that µ(A) is the smallest real number for which the above inequality is always correct.

(b) Let Φ(t) = etAetB be the Beam–Warming splitting of the matrix exponential et(A+B). By
considering the function Φ′(t)− (A+B)Φ(t), or otherwise, prove that

Φ(t) = et(A+B) +
∫ t

0
e(t−x)(A+B)[exA, B]exBdx,

where [ · , · ] is the matrix commutator.

(c) Suppose that both A and B are symmetric, negative-definite matrices. Prove that, in
Euclidean norm,

‖Φ(t)− et(A+B)‖ 6 2‖B‖ e
t[µ(A)+µ(B)] − etµ(A+B)

µ(A) + µ(B)− µ(A+B)
,

provided that µ(A+B) < µ(A) + µ(B). What is the appropriate inequality when µ(A+B) =
µ(A) + µ(B)?
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