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COMMUTATIVE ALGEBRA

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

In the following questions, A always denotes a commutative ring with unit element.
All rings are tacitly assumed to be commutative and possess a unit element. Results
presented in the lectures can be used without proof - unless you are explicitly asked
to give a proof - but their use should be properly indicated. Results from examples
sheets should not be used without proof.
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1 (a) Let a ⊂ A be an ideal and m ⊂ A a prime ideal. We consider the quotient
B = A/a as an A-module in the obvious way. Show that the localisation Bm of B is the
zero module if and only if a 6⊂ m.

(b) Let M be an A-module. Show that M is the zero module if and only if for
all maximal ideals m ⊂ A the localisation Mm is the zero module. (It may be helpful to
consider a submodule Ax ⊂M generated by one element, and apply part (a).)

(c) Let f : M → N be an A-module homomorphism. Show that f is injective if and
only if for all maximal ideals m ⊂ A the induced homomorphism fm : Mm → Nm between
the localisations is injective.

(d) Let E be an A-module. Show that E is flat if and only if for all maximal ideals
m ⊂ A the localisation Em is a flat Am-module.

2 (a) Give an example of a ring B, a B-module N and an exact sequence of B-modules

0→M ′ →M →M ′′ → 0

such that the induced sequence

0→ HomB(N,M ′)→ HomB(N,M)→ HomB(N,M ′′)→ 0

is not exact.

(b) Let F be a flat A-module, and P,Q ⊂ F be two submodules such that
F = P ⊕Q. Show that P is a flat A-module.

(c) An A-module P is projective if for every exact sequence

0→M ′ →M →M ′′ → 0

the induced sequence

0→ HomB(P,M ′)→ HomB(P,M)→ HomB(P,M ′′)→ 0

is exact. Show that a projective A-module is a direct summand of a free A-module. (You
may first want to show that every module is the quotient of a free module.)

(d) Let P be a projective A-module. Show that P is flat.
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3 In the following (A,m) is a local Noetherian ring with residue field k = A/m. We
put d = dimk(m/m2).

(a) Show that m can be generated by d elements. In particular, the least number
of generators of an m-primary ideal is less or equal to d.

(b) Prove that the ring of formal power series B = A[[x]] is a local ring with
maximal ideal I = mB + xB and residue field k. Show that dimk(I/I2) = d + 1 and
dim(B) ≤ d+ 1. (When quoting a result from the lectures you may assume without proof
that B is Noetherian.)

(c) Now assume that A is a regular local ring, i.e. d = dim(A). Let B = A[[x]] be
as above. Prove that dim(B) ≥ d+1. (One may consider a chain of prime ideals in A, and
then construct a suitable chain of prime ideals in B.) Hence conclude that dim(B) = d+1.

4 (a) Let φ : A → B be a ring homomorphism and p ⊂ A be a prime ideal of A.
Show that the set of prime ideals q of B with φ−1(q) = p is in canonical bijection with
Spec(B ⊗A κ(p)), where κ(p) is the field of fractions of A/p.

(b) Let K be a field and C a K-algebra which is finite-dimensional as K-vector
space. Proof that every prime ideal of C is maximal and that C has only finitely many
maximal ideals.

(c) Let A ⊂ B be an integral ring extension, and suppose B is finitely generated
as A-algebra. Show that for every prime ideal p ⊂ A there are only finitely many prime
ideals q of B with A ∩ q = p
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