Friday 30 May 2008 9.00 to 12.00

PAPER 7

COMMUTATIVE ALGEBRA

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

In the following questions, A always denotes a commutative ring with unit element. All rings are tacitly assumed to be commutative and possess a unit element. Results presented in the lectures can be used without proof - unless you are explicitly asked to give a proof - but their use should be properly indicated. Results from examples sheets should not be used without proof.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 (a) Let $\mathfrak{a} \subset A$ be an ideal and $\mathfrak{m} \subset A$ a prime ideal. We consider the quotient $B = A/\mathfrak{a}$ as an A-module in the obvious way. Show that the localisation $B_{\mathfrak{m}}$ of B is the zero module if and only if $\mathfrak{a} \not\subset \mathfrak{m}$.

(b) Let M be an A-module. Show that M is the zero module if and only if for all maximal ideals $\mathfrak{m} \subset A$ the localisation $M_{\mathfrak{m}}$ is the zero module. (It may be helpful to consider a submodule $Ax \subset M$ generated by one element, and apply part (a).)

(c) Let $f: M \to N$ be an A-module homomorphism. Show that f is injective if and only if for all maximal ideals $\mathfrak{m} \subset A$ the induced homomorphism $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ between the localisations is injective.

(d) Let E be an A-module. Show that E is flat if and only if for all maximal ideals $\mathfrak{m} \subset A$ the localisation $E_{\mathfrak{m}}$ is a flat $A_{\mathfrak{m}}$ -module.

 $\mathbf{2}$ (a) Give an example of a ring B, a B-module N and an exact sequence of B-modules

$$0 \to M' \to M \to M'' \to 0$$

such that the induced sequence

$$0 \to \operatorname{Hom}_B(N, M') \to \operatorname{Hom}_B(N, M) \to \operatorname{Hom}_B(N, M'') \to 0$$

is not exact.

(b) Let F be a flat A-module, and $P,Q \subset F$ be two submodules such that $F = P \oplus Q$. Show that P is a flat A-module.

(c) An A-module P is projective if for every exact sequence

$$0 \to M' \to M \to M'' \to 0$$

the induced sequence

$$0 \to \operatorname{Hom}_B(P, M') \to \operatorname{Hom}_B(P, M) \to \operatorname{Hom}_B(P, M'') \to 0$$

is exact. Show that a projective A-module is a direct summand of a free A-module. (You may first want to show that every module is the quotient of a free module.)

(d) Let P be a projective A-module. Show that P is flat.

3 In the following (A, \mathfrak{m}) is a local Noetherian ring with residue field $k = A/\mathfrak{m}$. We put $d = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$.

(a) Show that \mathfrak{m} can be generated by d elements. In particular, the least number of generators of an \mathfrak{m} -primary ideal is less or equal to d.

(b) Prove that the ring of formal power series B = A[[x]] is a local ring with maximal ideal $I = \mathfrak{m}B + xB$ and residue field k. Show that $\dim_k(I/I^2) = d + 1$ and $\dim(B) \leq d+1$. (When quoting a result from the lectures you may assume without proof that B is Noetherian.)

(c) Now assume that A is a regular local ring, i.e. $d = \dim(A)$. Let B = A[[x]] be as above. Prove that $\dim(B) \ge d+1$. (One may consider a chain of prime ideals in A, and then construct a suitable chain of prime ideals in B.) Hence conclude that $\dim(B) = d+1$.

4 (a) Let $\phi : A \to B$ be a ring homomorphism and $\mathfrak{p} \subset A$ be a prime ideal of A. Show that the set of prime ideals \mathfrak{q} of B with $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$ is in canonical bijection with $\operatorname{Spec}(B \otimes_A \kappa(\mathfrak{p}))$, where $\kappa(\mathfrak{p})$ is the field of fractions of A/\mathfrak{p} .

(b) Let K be a field and C a K-algebra which is finite-dimensional as K-vector space. Proof that every prime ideal of C is maximal and that C has only finitely many maximal ideals.

(c) Let $A \subset B$ be an integral ring extension, and suppose B is finitely generated as A-algebra. Show that for every prime ideal $\mathfrak{p} \subset A$ there are only finitely many prime ideals \mathfrak{q} of B with $A \cap \mathfrak{q} = \mathfrak{p}$

END OF PAPER

Paper 7