MATHEMATICAL TRIPOS Part III

Thursday 29 May 2008 1.30 to 4.30

PAPER 63

GENERAL RELATIVITY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

Information

The signature is (+ - -), and the curvature tensor conventions are defined by

 $R^{i}_{kmn} = \Gamma^{i}_{km,n} - \Gamma^{i}_{kn,m} - \Gamma^{i}_{pm} \Gamma^{p}_{kn} + \Gamma^{i}_{pn} \Gamma^{p}_{km} \,.$

You may use freely any information on the lecture handout on linearized perturbations included with this examination paper.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** Lecture Handout

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 A perfect fluid with energy density ρ , pressure p (both measured in the rest frame) and 4-velocity U^a (normalized so that $U_a U^a = 1$) has energy momentum tensor

$$T^{ab} = (\rho + p)U^a U^b - pg^{ab}.$$

Appealing to a conservation law derive the relativistic Euler equation

$$(\rho+p)U_{a;b}U^b = p_{,a} - U_a p_{,b}U^b.$$

Now assume hydrostatic equilibrium obtains i.e.,

- (a) There exists a timelike Killing vector K^a such that $\mathcal{L}_K g_{ab} = \mathcal{L}_K \rho = \mathcal{L}_K p = 0$.
- (b) The velocity U^a is proportional to K^a .

Express U^a in terms of K^a and hence show that

$$p_{,a} = -(\rho + p)(\log(K_c K^c)^{1/2})_{,a}.$$

Next consider a perfect fluid made up of black body radiation, i.e., $p = \frac{1}{3}\rho$. Show that in hydrostatic equilibrium

$$\rho \propto (K_c K^c)^{-2}.$$

Deduce that in a regular spacetime a compact body in hydrostatic equilibrium made from such fluid cannot have a free surface, i.e., one where $\rho \to 0$.

2 Consider the following Newtonian experiment in a terrestrial laboratory of dimension L. Two particles of equal mass m are placed one above the other with vertical separation ζ_0 at t = 0 and are then allowed to fall freely. Given that the Newtonian gravitational potential is $\phi = -GM/z$, where G is Newton's constant, M is the mass of the Earth and z is the distance to the centre of the Earth, justify the following equation for the vertical separation $\zeta(t)$,

$$\ddot{\zeta} = \frac{2GM}{z^3}\zeta$$

Now suppose that one particle carries charge q, the other is uncharged and there is a uniform vertical electric field of magnitude E. What is the additional contribution to $\ddot{\zeta}$? Assuming that L is sufficiently small for variations in GM/z^3 and E to be neglected, estimate, roughly, the changes in $\zeta(t)$ due to gravitational and electric effects respectively in a laboratory experiment. Demonstrate that in the limit $L \to 0$ gravitational effects can be neglected.

Use this result to write an essay on the *strong equivalence principle* and its implications for a relativistic theory of gravity.

3

3 Suppose that in Minkowski spacetime with cartesian coordinates the symmetric tensor $T^{ab}(t, \mathbf{x})$ has compact support and $T^{ab}_{,b} = 0$. Show that

$$\int_{\Omega} d^3x \, T^{\alpha\beta}(t, \mathbf{x}) = \frac{1}{2} \left(\frac{d}{dt}\right)^2 \int_{\Omega} d^3x \, T^{00}(t, \mathbf{x}) x^{\alpha} x^{\beta},$$

where Ω denotes all 3-space.

Now consider tensor perturbations away from Minkowski spacetime of Einstein's field equations $G^{ab} = -8\pi G T^{ab}$ for a source with compact support. Show, using the notation of the lecture handout, that far from the source and to leading order

$$E^{\alpha\beta}(t,\mathbf{x}) = \frac{G}{r}\ddot{Q}^{\alpha\beta}(t-r),$$

where r and $Q^{\alpha\beta}$ should be identified.

[*Hint: You may assume that the retarded potential solution of* $\Box u(t, \mathbf{x}) = f(t, \mathbf{x})$ *is*

$$u(t, \mathbf{x}) = \frac{1}{4\pi} \int_{\Omega} d^3 x' \frac{f(t - |\mathbf{x} - \mathbf{x}'|, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$

]

Two stars each of mass m move in a circle of radius R in the xy-plane centred on the origin under their mutual, Newtonian, attraction. Show that their positions may be taken to be

$$\mathbf{x} = \pm (R\cos\theta(t), R\sin\theta(t), 0),$$

where $\dot{\theta}^2 = Gm/(4R^3)$. Show that to leading order

$$Q^{\alpha\beta}(t) = mR^2 \begin{pmatrix} \cos 2\theta + \frac{1}{3} & \sin 2\theta & 0\\ \sin 2\theta & \frac{1}{3} - \cos 2\theta & 0\\ 0 & 0 & -\frac{2}{3} \end{pmatrix}.$$

Compute and interpret $E^{\alpha\beta}(t, \mathbf{x})$.

4 Consider the following line element for 2-dimensional de Sitter spacetime

$$ds^2 = dt^2 - \cosh^2 t \ d\chi^2 \,.$$

What are the ranges of t and χ ? Obtain the equations governing geodesics in this spacetime and sketch all of the geodesics through a fixed point.

Obtain a conformal compactification of this spacetime and use it to discuss the horizon structure.

[The transformation

$$T = 2\tan^{-1}(e^t) - \frac{1}{2}\pi,$$

may prove useful.]

END OF PAPER

Paper 63