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1 Let G = GL2(Fq). Give examples of two different non-standard Frobenius
endomorphisms on G, corresponding to rational structures over the same field Fq; in
each case, find a rational maximal torus inside a rational Borel subgroup of G.

(Show that the endomorphisms are indeed distinct. Express the maximal tori and
Borel subgroups as conjugates of some fixed subgroups; you do not have to compute explicit
matrix entries.)

2 Let G = SL3(Fq) with its standard Frobenius endomorphism, and let T be the
maximal torus consisting of diagonal matrices in G. Determine, as explicitly as possible,
the condition on θ ∈ Irr(TF ) for RG

T θ to be irreducible.

3 Let G be a connected reductive group, defined over Fq, with Frobenius endomor-
phism F . Denote by B the set of all Borel subgroups of G.

(a) Let G act on B × B by g(B1, B2) = (gB1,
gB2). Show that the orbits in B × B

are in bijection with the Weyl group W of G, and that this is equivalent to the Bruhat
decomposition.

(b) Let O(w) denote the orbit in B × B corresponding to the element w ∈ W , and let
X(w) denote the variety

{B ∈ B | (B,F (B)) ∈ O(w)}.

Show that X(w) can be identified with the variety L−1(BwB)/B, for a rational Borel
subgroupB, and show that there exists a rational maximal torus T ′ inside a Borel subgroup
B′ of G, such that there is an isomorphism between L−1(Ru(B′))/T ′F and L−1(BwB)/B.

4 State and prove the Mackey formula for Harish-Chandra induction (you may use
any results stated as lemmas in the lectures without proof, but these should be referred to
clearly).

5 Let G be a connected reductive group, defined over Fq. Let T be a rational maximal
torus and θ ∈ Irr(TF ) a character such that ±RG

T θ is irreducible. Show that ±RG
T θ is

cuspidal if and only if T is not contained in any proper rational parabolic subgroup of G.
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