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1 Time Series

Explain what is meant by a weakly stationary process {Xt}. Define the autocovariance
function and the autocorrelation function of {Xt}.

Let
Xt = α (Xt−1 −Xt−2) + εt , (1)

where α is a real constant and {εt} is a white noise process with mean zero and variance
σ2. Determine the range of possible values of α for which (1) has a unique weakly stationary
solution.

For α = −1/12 , find the Wold representation of {Xt} and determine the autocovariance
function of {Xt}.

[Results from lectures may be quoted and used without proof.]

2 Time Series

Let {Xt}t∈Z be a weakly stationary process with autocovariance function γk and spectral
density function fX(λ). Write down an expression for γk in terms of fX(λ).

The process {Yt} is obtained from {Xt} by applying the filter {ar}r∈Z , with ar ∈ R for
all r ∈ Z and

∑
r∈Z |ar| <∞ , so that Yt =

∑
r∈Z arXt−r . Show that {Yt} is weakly stationary

and find its spectral density function fY (λ) in terms of fX(λ) and a(λ) =
∑

r∈Z ar e
irλ .

Let {Zt} be obtained from {Yt} by applying the filter {br}, with br ∈ R for all r ∈ Z and∑
r∈Z |br| < ∞ . Write down the spectral density function fZ(λ) of {Zt}. Show that {Zt} can

be obtained from {Xt} by applying a linear filter {cr}, and find cr in terms of the ak’s and the
bk’s.

Let the gain of a filter {ar} be Ga(λ) = | a(λ)| , λ ∈ [0, π] .

(a) Suppose that Yt = Xt −Xt−1 . Find fY (λ). Sketch the gain of the filter taking {Xt} to
{Yt} and comment.

(b) Suppose that Zt = Yt − Yt−12 . Find fZ(λ). Sketch the gain of the filter taking {Yt} to
{Zt} and comment.

(c) Find the filter that takes {Xt} onto {Zt} and find its gain.

Paper 47



3

3 Monte Carlo Inference

(a) Monte Carlo methods depend crucially on the ability to generate pseudo random numbers
in the interval (0, 1). Make a short list of what you consider to be the most important
properties of a good pseudo random number generator.

(b) Suppose you had an ideal pseudo random number generator giving you the ability to
generate arbitrarily many independent uniform variates U1, U2, . . . , i.e., Ui ∼ U(0, 1).

(i) Describe how the method of inversion can be used to obtain draws from the Exp(λ)
distribution. How can this method be extended to obtain draws from a double–
exponential (Laplace) distribution? What property of the pseudo random number
generator is crucial to ensure that your algorithm gives samples from the correct
distribution?

(ii) Give two distinct algorithms for obtaining draws from a χ2
ν distribution where

ν ∈ {2, 3, . . . }. Say which algorithm you prefer, and why. Your answer may depend
on ν.

(iii) Consider obtaining draws from a Beta(α, β) distribution, when α, β ∈ {1, 2, . . . }.
Give one algorithm which uses one of the methods from (ii), and one new method.
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4 Monte Carlo Inference

(a) Describe the jackknife and nonparametric bootstrap methods for estimating the variance
of an estimator θ̂ of some parameter θ(F ), on the basis of a random sample x1, . . . , xn
of distinct observations from F . Your description of the nonparametric bootstrap should
include the form of the empirical distribution function F̂n used in the algorithm.

(b) Find the probability that a bootstrap sample contains at least one repeated value.

(c) Consider the following R code where x is a vector of length n containing the random
sample x1, . . . , xn , where x and n have been set earlier in the code.

R1a> mat <- matrix(NA, nrow=n, ncol=n-1)
R2a> for(i in 1:n) mat[i,] <- x[-i]
R3a> vect <- apply(mat, 1, mean)
R4a> (n-1)*mean((vect - mean(vect))^2)
R5a> (n-1)*(mean(vect) - mean(x))

Explain what is being calculated in lines R4a and R5a. Give the numerical value of the
expression in line R5a, and justify your answer.

Now consider another piece of R code below (with the same x as above).

R1b> alpha <- 0.05
R2b> B <- 199
R3b> mat <- matrix(NA, nrow=B, ncol=n)
R4b> for(b in 1:B) mat[i,] <- sample(x, n, replace=TRUE)
R5b> vect <- apply(mat, 1, mean)
R6b> s <- sort(vect)
R7b> c(s[(B+1)*alpha/2], s[(B+1)*(1-alpha/2)])

Explain what is being calculated in the code, with particular attention paid to the value
of the expression in line R7b.

(d) Suppose that we had another random sample y1, . . . , ym from a distribution G 6= F ,
where θ = EF {X} = EG{Y } and Cov(X,Y ) < 0 . Give an algorithm for constructing an
efficient, unbiased estimator θ̃ of θ that uses the combined sample x1, . . . , xn, y1, . . . , ym .
How could you estimate Var(θ̃)?
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5 Monte Carlo Inference

(a) (i) Describe the Gibbs Sampler for obtaining a dependent sample from some distribution
π(θ), θ ∈ Rp.

(ii) Suppose that we observe data y = (y1, . . . , yn)>, with corresponding known (scalar)
covariates x = (x1, . . . , xn)> and that we want to fit a polynomial regression model
of order k to the data. Then we can express the model in the form

y = Xkβk + ε

for design matrix

Xk =

 1 x1 · · · xk1
...

...
...

1 xn · · · xkn


where βk = (β0, β1, . . . , βk)> and ε = (ε1, . . . , εn)>, with ε ∼ Nn(0, σ2I), where
I is the n × n identity matrix. For independent priors σ2 ∼ Γ−1(a, b) and
βk ∼ Nk+1(µk,Σk) the posterior distribution is given by

π(βk, σ
2|x,y) ∝ (σ2)−n/2 exp

{
− 1

2σ2
(y −Xkβk)

>(y −Xkβk)
}

× (σ2)−(a+1) exp
{
− b

σ2

}
× exp

{
−1

2
(βk − µk)>Σ−1

k (βk − µk)
}
.

Show that the conditional distributions π(βk|σ2,x,y) and π(σ2|βk,x,y) are mul-
tivariate normal and inverse gamma, respectively, and calculate the parameters of
each distribution.

(iii) Hence describe how we can use the Gibbs Sampler to obtain a dependent sample
from the joint posterior distribution of π(β, σ2|x,y).

(b) Now suppose that the order of the polynomial is unknown, and that we wish to use a
reversible jump procedure to update the order of the polynomial model. We propose to
move from the model of order k, with parameters βk, to the model of order k + 1 with
parameters β′k+1 (keeping σ2 fixed) using the following procedure,

β′i = βi for i = 1, . . . , k

β′k+1 = z for z ∼ N(0, σ2
β) and σ2

β known

β′0 = β0 −
z

n

n∑
i=1

xk+1
i .

(i) Calculate an explicit expression for the corresponding acceptance probability for this
move.

(ii) Define the reverse move, for moving from the model of order k + 1 to the model of
order k .

(iii) What is the corresponding acceptance probability for this reverse move, from the
model of order k + 1, to the model of order k?
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6 Monte Carlo Inference

(a) Let x represent observed data, and z denote missing data, with joint distribution f(x, z;θ).
Briefly describe the iterative Expectation Maximisation (EM) algorithm for finding the θ̂
that maximises the observed data likelihood L(x|θ).

(b) Suppose that y = (y1, y2, y3, y4) is a data vector of observed counts from a multinomial
distribution with parameters n and p , where the cell probabilities

p = (p1, p2, p3, p4) =
(

1
2
− θ

2
,
θ

4
,
θ

4
,

1
2

)
,

are parameterised by θ ∈ [0, 1].

(i) Find the maximum likelihood estimator θ̂ based on the complete data likelihood
L(θ|y).

(ii) Now suppose instead that only three counts

x = (x1, x2, x3)

were observed, where
x = (y1, y2, y3 + y4).

That is, y3 = x3 − z, y4 = z and z is missing. Consider using the EM algorithm for
estimating θ̂ based on the observed data log likelihood L(x|θ). Derive the “E–step”
of the EM algorithm and write the resulting expression(s) in terms of logL(y(t)|θ),
for

y(t) = (y1, y2, y
(t)
3 , y

(t)
4 )

where y(t)
3 = x3 − z(t), y(t)

4 = z(t), and z(t) = E{z|x, θ(t)} which you should calculate.
In other words, show that the “E–step” is the same as “filling in the missing values”
in this case.

(iii) Combine the “E–step” in part (ii) with an “M–step” derived from the appropriate
application of your result from part (i). That is, give a complete description of your
EM algorithm in this case for iteratively finding θ̃, the maximum likelihood estimator
of the observed data likelihood.

(iv) Suppose that x = (38, 34, 125) and θ(t) = 0.5 . What are the values of y(t)
3 and θ(t+1)?

END OF PAPER
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