MATHEMATICAL TRIPOS Part III

Friday 6 June 2008 9.00 to 12.00

PAPER 4

MODULAR REPRESENTATION THEORY OF FINITE GROUPS

Attempt no more than **THREE** questions. There are **SIX** questions in total. The questions carry equal weight.

In this paper G is a finite group. In the usual notation (K, \mathfrak{O}, k) is a splitting p-modular system for G where p, the characteristic of k, is a prime dividing |G|. Throughout $R \in \{\mathfrak{O}, k\}$.

STATIONERY REQUIREMENTSSPECIAL REQUIREMENTSCover sheetNoneTreasury tagScript paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Define a central, primitive idempotent in a commutative ring, and say what it means to say that two idempotents are orthogonal. What is a block of a group algebra RG? You should ensure that you demonstrate the equivalence of the definition in terms of ideals and the definition in terms of idempotents. Prove that a block decomposition is unique up to ordering.

Take R = k. What do we mean by a principal indecomposable module P for kG? Prove that P has a unique maximal submodule J(P). Define the Cartan matrix \underline{C}_G of kG.

Let $1 \neq N$ be a normal *p*-subgroup of *G* and set $\overline{G} = G/N$. Let $\tau : kG \to k\overline{G}$ be the algebra homomorphism induced by the canonical homomorphism $G \to \overline{G}$.

(a) By considering the augmentation ideal of kN show that ker τ is a nilpotent ideal in kG.

(b) Let \mathfrak{C} be a conjugacy class in G such that $\mathfrak{C} \cap C_G(N) = \emptyset$. By considering orbits of N on \mathfrak{C} , and letting $[\mathfrak{C}]$ denote the class sum, prove that $[\mathfrak{C}] \in \ker \tau$.

Suppose in addition that $G = NC_G(N)$. Using Idempotent Refinement, or otherwise, deduce that τ induces a one-to-one correspondence between block idempotents of kG and those of $k\overline{G}$.

Using induction on |N|, or otherwise, show that $\underline{C}_G = |N|\underline{C}_{\overline{G}}$.

2 Let R be a commutative ring of coefficients such that the Krull-Schmidt theorem holds for finitely-generated RG-modules. If M is an indecomposable RG-module, define a vertex Dof M and a source M_0 of M. Prove that

- (a) the vertices of *M* are *G*-conjugate;
- (b) any two sources for M (with respect to the vertex D) are $N_G(D)$ -conjugate;
- (c) if the p'-part of |G| is invertible in R, then the vertices of M are p-subgroups.

What does it mean to say that the RG-module M is a trivial source module? Show that the indecomposable module M has a trivial source if and only if it is a direct summand of a permutation module.

Use Mackey Decomposition to show that, if M_1 and M_2 are $\mathcal{D}G$ -permutation modules on the cosets of H_1 and H_2 respectively, then the natural homomorphism from $\operatorname{Hom}_{\mathcal{D}G}(M_1, M_2)$ to $\operatorname{Hom}_{kG}(\overline{M}_1, \overline{M}_2)$ given by reduction modulo \mathfrak{p} is surjective.

Deduce, using the Idempotent Refinement Theorem, that any trivial source kG-module lifts to a trivial source $\mathfrak{D}G$ -module, unique up to isomorphism.

3 (a) Take $n \in \mathbb{N}$ and let $H = \mathbb{Z}/p^n$ be the cyclic group of order p^n , and k a field of characteristic p. Show that there are p^n isomorphism classes of indecomposable kH-modules $V_1, V_2, \ldots, V_{p^n}$ with $\dim(V_i) = i$, and that $\dim_k \operatorname{Hom}_{kH}(V_i, V_j) = \min\{i, j\}$.

(b) Let P be a direct product of two copies of the cyclic group of order p. If k is infinite, show that the group algebra kP has infinite representation type.

(c) Deduce, using the theory of vertices and sources, that a block of kG has a cyclic defect group if and only if there is only a finite number of indecomposable kG-modules lying in the block.

4 Suppose that G acts by conjugation on $\mathfrak{O}G$.

(a) Identify the fixed point space $(\mathfrak{D}G)^G$ and if $H \leq G$ identify an \mathfrak{D} -basis for $(\mathfrak{D}G)^H$. Define the transfer map Tr_H^G and state why the image $(\mathfrak{D}G)_H^G$ is an ideal in $Z(\mathfrak{D}G)$. Given a Sylow *p*-subgroup *P* of *H*, prove that $(\mathfrak{D}G)_H^G = (\mathfrak{D}G)_P^G$.

In what follows we work over k. Let D be an arbitrary p-subgroup of G.

(b) Prove that $(kG)^D = kC_G(D) \oplus \sum_{D' < D} (kG)^D_{D'}$ as a sum of a subring and a 2-sided ideal.

(c) Use this decomposition to define the Brauer homomorphism, Br_D . Write down the kernel of $\operatorname{Br}_D \downarrow_{(kG)^{N_G(D)}}$.

(d) Show that Br_D induces a one-to-one correspondence between block idempotents in Z(kG) with defect group D and primitive idempotents in $(kC_G(D))_D^{N_G(D)}$, given by sending $e \in (kG)_D^G$ to $\operatorname{Br}_D(e)$ (results used should be clearly stated).

(e) Deduce Brauer's First Main Theorem, namely that if H is a subgroup of G containing $N_G(D)$, then there is a one-to-one correspondence between blocks of G with defect group D and blocks of H with defect group D.

5 (a) State carefully the Green Correspondence.

(b) Let e be a central idempotent in kG and M a kG-module; let D be a p-subgroup of G, and let K be a subgroup with $C_G(D) \leq K \leq N_G(D)$.

(i) With this notation, state and prove Nagao's version of Brauer's Second Main Theorem, under the assumption that e.M = M.

(ii) Suppose that M is indecomposable with vertex D and that e is primitive. Deduce that

$$e.M = M \iff \operatorname{Br}_D(e).M' = M'$$

where M' is the Green Correspondent of M as a $kN_G(D)$ -module.

Let V be an indecomposable kK-module with vertex D such that $\operatorname{Br}_D(e).V = V$. Suppose that

$$V \uparrow^G = e.(V \uparrow^G) \oplus (\bigoplus_j V_j)$$

where V_j is indecomposable. Let D_j be a vertex of V_j . Prove that $D_j \leq_G D \cap {}^g D$ for some $g \in G \setminus N_G(D)$. (This last result is Juhász's version of Nagao's Theorem.)

6 In this question k is an infinite field. What does it mean to say that kG has finite representation type?

Suppose B is a block of kG whose defect group D is cyclic of order p^n . Let Q be the unique subgroup of D of order p. Define the inertial index of B. Write down the Green Correspondence between modules for G and $N_G(Q)$.

Assume that B has inertial index 1. Prove that there is only one simple module S in B, and that the projective cover of S is uniserial of length p^n . (You may assume the result at the end of question 3, and can also state any other general facts you need.)

END OF PAPER