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MODULAR REPRESENTATION THEORY OF FINITE GROUPS

Attempt no more than THREE questions.

There are SIX questions in total.

The questions carry equal weight.

In this paper G is a finite group. In the usual notation (K,O, k) is a splitting p-modular
system for G where p, the characteristic of k, is a prime dividing |G|. Throughout R ∈ {O, k}.
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1 Define a central, primitive idempotent in a commutative ring, and say what it means
to say that two idempotents are orthogonal. What is a block of a group algebra RG? You
should ensure that you demonstrate the equivalence of the definition in terms of ideals and the
definition in terms of idempotents. Prove that a block decomposition is unique up to ordering.

Take R = k. What do we mean by a principal indecomposable module P for kG? Prove
that P has a unique maximal submodule J(P ). Define the Cartan matrix CG of kG.

Let 1 6= N be a normal p-subgroup of G and set Ḡ = G/N . Let τ : kG → kḠ be the
algebra homomorphism induced by the canonical homomorphism G→ Ḡ.

(a) By considering the augmentation ideal of kN show that ker τ is a nilpotent ideal in kG.

(b) Let C be a conjugacy class in G such that C∩CG(N) = ∅. By considering orbits of N on
C, and letting [C] denote the class sum, prove that [C] ∈ ker τ .

Suppose in addition that G = NCG(N). Using Idempotent Refinement, or otherwise,
deduce that τ induces a one-to-one correspondence between block idempotents of kG and those
of kḠ.

Using induction on |N |, or otherwise, show that CG = |N |CḠ.

2 Let R be a commutative ring of coefficients such that the Krull-Schmidt theorem holds
for finitely-generated RG-modules. If M is an indecomposable RG-module, define a vertex D
of M and a source M0 of M . Prove that

(a) the vertices of M are G-conjugate;

(b) any two sources for M (with respect to the vertex D) are NG(D)-conjugate;

(c) if the p′-part of |G| is invertible in R, then the vertices of M are p-subgroups.

What does it mean to say that the RG-module M is a trivial source module? Show that
the indecomposable module M has a trivial source if and only if it is a direct summand of a
permutation module.

Use Mackey Decomposition to show that, if M1 and M2 are OG-permutation modules on
the cosets of H1 and H2 respectively, then the natural homomorphism from HomOG(M1,M2)
to HomkG(M̄1, M̄2) given by reduction modulo p is surjective.

Deduce, using the Idempotent Refinement Theorem, that any trivial source kG-module
lifts to a trivial source OG-module, unique up to isomorphism.

3 (a) Take n ∈ N and let H = Z/pn be the cyclic group of order pn, and k a field of characteristic
p. Show that there are pn isomorphism classes of indecomposable kH-modules V1, V2, . . . , Vpn

with dim(Vi) = i, and that dimk HomkH(Vi, Vj) = min{i, j}.

(b) Let P be a direct product of two copies of the cyclic group of order p. If k is infinite,
show that the group algebra kP has infinite representation type.

(c) Deduce, using the theory of vertices and sources, that a block of kG has a cyclic defect
group if and only if there is only a finite number of indecomposable kG-modules lying in the
block.
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4 Suppose that G acts by conjugation on OG.

(a) Identify the fixed point space (OG)G and if H 6 G identify an O-basis for (OG)H . Define
the transfer map TrG

H and state why the image (OG)G
H is an ideal in Z(OG). Given a Sylow

p-subgroup P of H, prove that (OG)G
H = (OG)G

P .

In what follows we work over k. Let D be an arbitrary p-subgroup of G.

(b) Prove that (kG)D = kCG(D)⊕
∑

D′<D(kG)D
D′ as a sum of a subring and a 2-sided ideal.

(c) Use this decomposition to define the Brauer homomorphism, BrD. Write down the kernel
of BrD ↓(kG)NG(D) .

(d) Show that BrD induces a one-to-one correspondence between block idempotents in Z(kG)
with defect group D and primitive idempotents in (kCG(D))NG(D)

D , given by sending e ∈ (kG)G
D

to BrD(e) (results used should be clearly stated).

(e) Deduce Brauer’s First Main Theorem, namely that if H is a subgroup of G containing
NG(D), then there is a one-to-one correspondence between blocks of G with defect group D
and blocks of H with defect group D.

5 (a) State carefully the Green Correspondence.

(b) Let e be a central idempotent in kG and M a kG-module; let D be a p-subgroup of G,
and let K be a subgroup with CG(D) 6 K 6 NG(D).

(i) With this notation, state and prove Nagao’s version of Brauer’s Second Main Theorem,
under the assumption that e.M = M .

(ii) Suppose that M is indecomposable with vertex D and that e is primitive. Deduce
that

e.M = M ⇐⇒ BrD(e).M ′ = M ′

where M ′ is the Green Correspondent of M as a kNG(D)-module.

Let V be an indecomposable kK-module with vertex D such that BrD(e).V = V . Suppose
that

V ↑G= e.(V ↑G)⊕ (
⊕

j

Vj)

where Vj is indecomposable. Let Dj be a vertex of Vj . Prove that Dj 6G D ∩ gD for some
g ∈ G \NG(D). (This last result is Juhász’s version of Nagao’s Theorem.)

6 In this question k is an infinite field. What does it mean to say that kG has finite
representation type?

Suppose B is a block of kG whose defect group D is cyclic of order pn. Let Q be the unique
subgroup of D of order p. Define the inertial index of B. Write down the Green Correspondence
between modules for G and NG(Q).

Assume that B has inertial index 1. Prove that there is only one simple module S in B,
and that the projective cover of S is uniserial of length pn. (You may assume the result at the
end of question 3, and can also state any other general facts you need.)

END OF PAPER
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