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ζn denotes a primitive nth root of unity. OK denotes the ring of integers of K.

1

(i) State the Kummer-Dedekind theorem.

(ii) Let L = Q(α), where α is a root of the monic irreducible polynomial f(X) ∈ Z[X].
Suppose p is a prime number such that f(X) mod p has no repeated roots in the algebraic
closure of Fp. Prove that the index [OL : Z[α]] is coprime to p.

(iii) Determine which primes ramify in Q( 11
√

44)/Q. Justify your answer.

2

(i) Let F/K be a Galois extension of number fields and p a prime of K. Prove that
the Galois group Gal(F/K) acts transitively on the set of primes of F above p . Explain
briefly how this may be used to determine the number of primes above p in an intermediate
extension K ⊂ L ⊂ F , in terms of the decomposition group of a prime above p in F/K.

(ii) Let F = Q(ζ5,
5
√
λ) for some prime number λ. Let q be a prime of F above a prime

p of Q, whose decomposition group in Gal(F/Q) is cyclic of order 2. Show that there are
three primes above p in Q( 5

√
λ), and two primes above p in Q(ζ5).

3 Define the Dirichlet L-function LN (ψ, s) for a Dirichlet character ψ modulo N , and
state its expression as an Euler product. Prove that if ψ is non-trivial, then LN (ψ, s) is
analytic on Re(s) > 0 and that LN (ψ, 1) 6= 0 .

Prove Dirichlet’s theorem on primes in arithmetic progressions. You may assume
that for a Dirichlet character ψ,

∑
p prime, n≥1

ψ(p)n

n
p−ns

converges absolutely on Re(s) > 1 to an analytic branch of the logarithm of LN (ψ, s).

(Standard results on convergence of Dirichlet series may be used without proof. You may
also assume that the Riemann ζ-function has an analytic continuation to C except for a
simple pole at s = 1 .)

4

Let F = Q(ζ3,
3
√

3) , and let ρ be the two-dimensional irreducible representation
of Gal(F/Q) ' S3 . Compute the first ten coefficients a1, ... , a10 of its Artin L-series
L(ρ, s) =

∑
n an n

−s.
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