

MATHEMATICAL TRIPOS Part III

Monday 2 June 2008 1.30 to 3.30

PAPER 32

ALGEBRAIC NUMBER THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

 ζ_n denotes a primitive n^{th} root of unity. O_K denotes the ring of integers of K.

1

(i) State the Kummer-Dedekind theorem.

(ii) Let $L = \mathbb{Q}(\alpha)$, where α is a root of the monic irreducible polynomial $f(X) \in \mathbb{Z}[X]$. Suppose p is a prime number such that $f(X) \mod p$ has no repeated roots in the algebraic closure of \mathbb{F}_p . Prove that the index $[O_L : \mathbb{Z}[\alpha]]$ is coprime to p.

(iii) Determine which primes ramify in $\mathbb{Q}(\sqrt[11]{44})/\mathbb{Q}$. Justify your answer.

$\mathbf{2}$

(i) Let F/K be a Galois extension of number fields and \mathbf{p} a prime of K. Prove that the Galois group $\operatorname{Gal}(F/K)$ acts transitively on the set of primes of F above \mathbf{p} . Explain briefly how this may be used to determine the number of primes above \mathbf{p} in an intermediate extension $K \subset L \subset F$, in terms of the decomposition group of a prime above \mathbf{p} in F/K.

(ii) Let $F = \mathbb{Q}(\zeta_5, \sqrt[5]{\lambda})$ for some prime number λ . Let **q** be a prime of F above a prime p of \mathbb{Q} , whose decomposition group in $\operatorname{Gal}(F/\mathbb{Q})$ is cyclic of order 2. Show that there are three primes above p in $\mathbb{Q}(\sqrt[5]{\lambda})$, and two primes above p in $\mathbb{Q}(\zeta_5)$.

3 Define the Dirichlet *L*-function $L_N(\psi, s)$ for a Dirichlet character ψ modulo *N*, and state its expression as an Euler product. Prove that if ψ is non-trivial, then $L_N(\psi, s)$ is analytic on $\operatorname{Re}(s) > 0$ and that $L_N(\psi, 1) \neq 0$.

Prove Dirichlet's theorem on primes in arithmetic progressions. You may assume that for a Dirichlet character $\psi,$

$$\sum_{\substack{p \text{ prime, } n \ge 1}} \frac{\psi(p)^n}{n} p^{-ns}$$

converges absolutely on $\operatorname{Re}(s) > 1$ to an analytic branch of the logarithm of $L_N(\psi, s)$.

(Standard results on convergence of Dirichlet series may be used without proof. You may also assume that the Riemann ζ -function has an analytic continuation to \mathbb{C} except for a simple pole at s = 1.)

 $\mathbf{4}$

Let $F = \mathbb{Q}(\zeta_3, \sqrt[3]{3})$, and let ρ be the two-dimensional irreducible representation of $\operatorname{Gal}(F/\mathbb{Q}) \simeq S_3$. Compute the first ten coefficients a_1, \ldots, a_{10} of its Artin *L*-series $L(\rho, s) = \sum_n a_n n^{-s}$.

END OF PAPER

Paper 32