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1 Suppose that X is a compact metric space and that T : X → X is a continuous map.
What does it mean to say that the system (X,T ) is minimal? Show that every system contains
a nontrivial minimal subsystem, and deduce the Birkhoff Recurrence Theorem.

Suppose that (X,T ) is a minimal system and that (X̃, T̃ ) is an extension of this system
by the group R/Z with cocycle ρ : X → R/Z. State and prove a sufficient condition on ρ in
order that (X̃, T̃ ) be a minimal system. Hence, or otherwise, show that the set of values taken
by n2

√
2, n = 1, 2, 3, . . . , is dense in R/Z.

2 Suppose that (X,µ, T ) is a measure-preserving system. What does it mean for the
transformation T : X → X to be ergodic? State the pointwise ergodic theorem.

Let X = [0, 1] and recall that the Gauss map T : X → X is defined by Tx = {1/x} if
x 6= 0 and T0 = 0. Define the Gauss measure ν, and show that T is measure-preserving and
ergodic with respect to ν.

Show that for almost all real numbers x ∈ [0, 1] the proportion of the partial quotients
a1, a2, . . . , an in the continued fraction expansion for x which are equal to 2 tends to log2 9− 3
as n→∞.

3 State and prove the Bochner-Herglotz spectral theorem [you may assume the Fourier
inversion formula for smooth functions].

Using it, or otherwise, show that a measure-preserving system (X,µ, T ) is weakly mixing
if and only if it has no nonconstant eigenfunctions [you may assume the L2 ergodic theorem].

Deduce that the ×2 map on R/Z is weakly mixing [any results you use about the
representation of functions f ∈ L2(R/Z) as Fourier series may be used without detailed
comment ].

4 What is meant by the assertion that a measure-preserving system has the SZ property at
level k? Show that Szemerédi’s theorem on arithmetic proressions is a consequence of the fact
that every measure-preserving system has the SZ property at all levels [any results you need
on weak convergence of measures may be assumed without proof provided that they are properly
stated ].

What does it mean to say that a measure-preserving system (X,µ, T ) is compact? Prove
that every compact system has the SZ property.
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