MATHEMATICAL TRIPOS Part III

Wednesday 4 June 2008 9.00 to 12.00

PAPER 28

ELLIPTIC CURVES

Attempt **ALL** questions. There are FOUR questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS $Cover \ sheet$ None

Treasury tag $Script \ paper$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let E be an elliptic curve over \mathbb{F}_q , the field with q elements.

(i) State and prove Hasse's estimate for the number of rational points on E.

(ii) Given that $\phi^2 - [\operatorname{tr}(\phi)]\phi + [\operatorname{deg}(\phi)] = 0$ for any isogeny $\phi : E \to E$, show there exists $\alpha \in \mathbb{C}$ with $|\alpha| = \sqrt{q}$ such that $\#E(\mathbb{F}_{q^n}) = (1 - \alpha^n)(1 - \alpha^{-n}q^n)$ for all $n \ge 1$.

[Standard facts about isogenies may be quoted without proof.]

2 Let *E* be the elliptic curve over \mathbb{Q} given by the Weierstrass equation

$$y^2 - 13y = x^3 + x^2 + 13x$$

with discriminant $\Delta = -91^3$. Let E' be the elliptic curve over \mathbb{Q} given by the plane projective curve

$$x^3 + y^3 + 13z^3 - 2xyz = 0$$

with base point (x : y : z) = (1 : -1 : 0). It is known that there is an isogeny $\phi : E' \to E$ of degree 3, defined over \mathbb{Q} . (You are not required to find ϕ .)

- (i) Find the points of inflection on E' defined over $\overline{\mathbb{Q}}$.
- (ii) Compute 2P and 2Q where P = (0,0) and Q = (-2,3) on E.
- (iii) Determine the torsion subgroups of $E(\mathbb{Q})$ and $E'(\mathbb{Q})$.
- (iv) Prove that the points P + 4Q and P 4Q do not have integral co-ordinates.

3 Let $n \ge 2$ be an integer and p a prime not dividing n.

(i) What is a formal group \mathcal{F} over \mathbb{Z}_p ? Prove that the multiplication-by-n map $[n] : \mathcal{F} \to \mathcal{F}$ is an isomorphism of formal groups.

(ii) Show that if E is an elliptic curve over \mathbb{Q}_p with good reduction, and $P \in E(\mathbb{Q}_p)$, then there exists a finite unramified extension L/\mathbb{Q}_p and a point $Q \in E(L)$ with nQ = P.

4 EITHER

(a) Write an essay on the congruent number problem, including a proof that 1 and 2 are not congruent numbers.

OR

(b) Write an essay on Galois cohomology and its applications to Kummer theory and the proof of the Weak Mordell-Weil Theorem.

END OF PAPER