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1 Let E be a complex elliptic curve. Show that the curves E × point, point×E, and
the diagonal ∆ ∼= E are linearly independent in H2(E×E,Q). Deduce that the Künneth
formula fails for Chow groups, in the sense that the natural homomorphism

CH∗(E)⊗Z CH
∗(E)→ CH∗(E × E)

given by x⊗ y 7→ π∗1(x)π∗2(y) is not surjective. Here π1 and π2 denote the two projections
E × E → E.

2 Let f : X → Y be a surjective morphism of complex projective varieties of
dimension 2, with X smooth over C and Y normal. Suppose that there is exactly one
irreducible curve C in X which f maps to a point. Show that the self-intersection number
C2 is negative. [Hint: Embed Y in some projective space, and consider hyperplane sections
of Y .]

3 (a) Let X be a smooth complex projective surface. Let C be an irreducible curve
on X with negative self-intersection. Show that any effective divisor linearly equivalent to
C is equal to C.

(b) Show that a smooth complex projective surface contains at most countably many
irreducible curves with negative self-intersection. Can a smooth complex projective surface
contain uncountably many irreducible curves with zero self-intersection?

(c) Using (b) or otherwise, show that a smooth surface of degree at least 3 in P3 contains
at most finitely many lines.

4 Let X be a complex abelian surface (a compact complex torus of complex dimension
2 which is also a projective variety). Show that there is a surjective homomorphism of
algebraic groups from the Jacobian of some smooth curve onto X. [Hint: Choose a
projective embedding of X, and consider a hyperplane section of X.]
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5 (a) Let C,D be effective divisors of degree 3 in P2 over C. Suppose that C ∩D,
as a set, is just a single point p. What can you say about the intersection multiplicity of
C and D at p?

(b) Give an example of a triple line C = 3L (for some line L in P2) and an irreducible
cubic curve D which is smooth at a point p such that C ∩D, as a set, is the single point
p.

(c) Classify pairs C,D as in (b) such that, in addition, D is a cuspidal cubic. (That
means that D is projectively isomorphic to the curve y2z = x3.) “Classify” here means
up to projective isomorphism, that is, up to the action of PGL(3,C) on the set of pairs
C,D ⊂ P2.

6 (a) Let X be a smooth complex projective surface of degree d in P3. Suppose that
X contains a smooth rational curve C which has degree a (as a curve in P3). Compute
the self-intersection number of C in X.

(b) Show that a very general complex surface X of degree d at least 4 in P3 contains no
smooth rational curve. (You may use theorems from the course.)

END OF PAPER
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