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1 Define the differential (p, q)-forms on a complex manifold and the differential
operators ∂ and ∂̄. Explain what is meant by a real (p, p)-form. For a real (p, p)-form η,
show that dη = 0 if and only if ∂̄η = 0. Show also that if f = u + iv is a holomorphic
function on a complex manifold then its real part u satisfies ∂̄∂u = 0.

Suppose that ϕ is a (0, q)-form on a polydisc U in Cn, q > 0, and ∂̄ϕ = 0. Show
that there is a (0, q − 1)-form ψ defined on an open subset U0 ⊂ U such that ∂̄ψ = ϕ|U0 .

By applying the latter result on suitable neighbourhoods, but without appealing
to Hodge theory, deduce that every (0, 1)-form on the Riemann sphere CP 1 = C∪ {∞} is
∂̄-exact.

[You may assume that if D ⊆ C is open and a complex function g is smooth on D then, for

a closed disc D0 ⊂ D, the function f(z) =
1

2πi

∫
D0

g(w)
w − z

dw dw̄ is smooth and satisfies

∂f

∂z̄
= g on the interior D0 of D0.

At some point, you might like to consider the Laurent expansion of an appropriate
holomorphic function on an annulus in C.]

2 Define the terms holomorphic line bundle L over a complex manifold X, holomor-
phic section of L over an open subset U ⊆ X and the dual bundle L∗ of L, showing that
L∗ is a holomorphic bundle.

Now suppose that X is compact and connected. Show that L is holomorphically
trivial if and only if both L and L∗ have non-identically-zero holomorphic sections over X.

Define the tautological bundle O(−1) and the hyperplane bundle O(1) over CPn

and show that these bundles have holomorphic transition functions. Let H be a hyperplane
in CPn. Give an example of a never-zero holomorphic section of O(1) over CPn \H which
extends holomorphically over H.

[Standard results about complex vector bundles over smooth manifolds may be assumed,
provided these are accurately stated. You may also assume standard properties of holo-
morphic functions on open neighbourhoods in Cn.]
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3 Define the terms divisor, order of a meromorphic function at an irreducible
hypersurface and principal divisor on a complex manifold. You should state the auxiliary
properties of local rings that you require. Explain what is meant by a local defining
function for a divisor D and by the holomorphic line bundle [D] associated to D. Show
that [D] is holomorphically trivial if and only if D is a principal divisor.

State the adjunction formula for the canonical bundle of a non-singular hypersurface
in a complex manifold.

Let Q1 and Q2 be complex homogeneous polynomials on C5 of degrees, respectively,
d1 and d2. Suppose that the zero locus W of Q1 defines a non-singular connected
hypersurface in CP 4 and the common zero locus of Q1 and Q2 defines a non-singular
complex surface S in CP 4. Determine all the values of d1,d2, such that S has a trivial
canonical bundle.

[You may assume that the canonical bundle of CPn is isomorphic to [−(n+ 1)H], where
H is a hyperplane, and that S ∩H0 is non-empty for some hyperplane H0 in CP 4. The
relation [D1 +D2] = [D1]⊗ [D2] for divisors D1, D2 may be used without proof.]

4 Define the fundamental (1, 1)-form ω of a Hermitian metric on a complex manifold.
Explain briefly how the volume form of the induced Riemannian metric is expressed in
terms of ω.

Define the Hodge ∗-operator for complex differential forms on a Hermitian manifold.
Show that on a Hermitian manifold of (complex) dimension n every (n, 0)-form η satisfies
∗η = cη, with c = (−1)n(n+1)/2 in.

Show that the operator ∂̄∗ = − ∗ ∂∗ is the formal L2 adjoint of ∂̄. Define ∂̄-
harmonic forms and state the Hodge theorem for the space of (p, q)-forms. Show that the
space of ∂̄-harmonic (p, q)-forms on a compact Hermitian manifold X is isomorphic to the
Dolbeault cohomology Hp,q(X) and also to the space of ∂̄-harmonic (n − p, n − q)-forms
(n = dimC X).

[You may assume that ∗∗ α = (−1)p+qα for each (p, q)-form α.]
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5 Let X be a compact Kähler manifold. Define the Laplacians ∆, ∆∂ , ∆∂̄ , ∆c

corresponding to, respectively d, ∂, ∂̄, dc. Prove the identities ∆ = 2∆∂̄ = 2∆∂ = ∆c.

Show that a complex differential form α on X satisfies ∆α = 0 if and only if
∆(J(α)) = 0, where J denotes the almost complex structure on X.

State the ∂∂̄-lemma for X. Show that if ω and ω̃ are two Kähler forms in the same
de Rham cohomology class then ω̃ = ω + i∂∂̄f for some smooth real-valued function f
on X and f is uniquely determined up to additive constant.

[You may assume the identity [Λ, ∂] = i∂̄∗ on a Kähler manifold, provided that you give a
definition of Λ.]

END OF PAPER
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