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1 Explain what is meant by a vector field on a smooth manifold M . Given vector
fields X, Y on M , define the Lie bracket [X,Y ] as a vector field on M . If f : M → N is
a diffeomorphism of smooth manifolds, define the operator f∗ on vector fields, and prove
that f∗[X,Y ] = [f∗X, f∗Y ].

Suppose that G is a Lie group; what does it mean to say that a vector field X on
G is left-invariant? Prove the existence of a unique left-invariant vector field with a given
value ξ ∈ TeG at the identity, and deduce the existence of a Lie-bracket on TeG induced
from the Lie bracket on vector fields.

Suppose now that G = GL(n,R) ⊂ Mn×n(R). Choosing suitable coordinates xpq
for Mn×n(R), and hence an identification of each tangent space with Mn×n(R), show that
the induced Lie bracket on TeG corresponds to the commutator of matrices.

2 Given a vector bundle π : E →M over a smooth manifold M of dimension n, and
r a positive integer, describe briefly the construction of the rth exterior power bundle ΛrE
over M . Assuming the existence of partitions of unity, show that the line bundle ΛnT ∗M
is trivial if and only if there exists a family of charts {Uα} in the given differential structure
on M for which the corresponding coordinate domains cover M and the Jacobian matrices
on the overlaps all have positive determinant. (If these conditions are satisfied, then the
manifold is called orientable.)

If π : E → M is a vector bundle of rank r over an orientable manifold M , prove
that the total space of the bundle is an orientable manifold if and only if the line bundle
ΛrE over M is trivial. Given any smooth manifold M , show that the total space of the
cotangent bundle T ∗M is always an orientable manifold.
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3 Define the exterior derivative map d on r-forms on a smooth manifold M (r ≥ 0).
If ω is a 1-form and X,Y are vector fields with Lie bracket [X,Y ], show that

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).

Define what is meant by a connection D on a vector bundle E over M , and by the
corresponding covariant exterior derivative dE . Define also the curvature R, explaining
why it may be considered as a section of Λ2T ∗M ⊗End(E). For any section σ of E, show
that

R(X,Y )(σ) = DXDY σ −DYDXσ −D[X,Y ]σ.

Given a connection D on E, show that the recipe (D̃Xα)(s) = DX(α(s))−α(DXs)
for all sections α of End(E), sections s of E, and vector fields X, defines an induced
connection D̃ on the bundle End(E). Prove, for all vector fields X and Y , the identity(

[D̃X , D̃Y ]α
)
(s) = [DX , DY ](α(s))− α([DX , DY ]s),

where the square brackets here denote commutators of vector bundle endomorphisms.
Deduce that the curvature R̃ of D̃ is zero if and only if R = ω ⊗ id for some 2-form ω,
where id denotes the identity endomorphism of E.

4 Given a smooth curve γ : [a, b]→M on a smooth manifold, define what is meant by
a smooth vector field V (t) along γ. Given a Koszul connection ∇ on M , explain carefully
the concepts of the covariant derivative of V (t) along γ, and V (t) being parallel along γ.
Given a tangent vector Va ∈ Tγ(a)M , show that there exists a unique parallel vector field
V (t) along γ with V (a) = Va. Hence deduce the existence of the parallel translation maps
τt : Tγ(a)M → Tγ(t)M , which are isomorphisms of vector spaces.

Given a Riemannian metric g on M , what does it mean to say that a Koszul
connection ∇ is a metric connection? Deduce in this case that the parallel translation
maps are isometries with respect to the given inner-products on tangent spaces.

Given a piecewise smooth closed curve γ : [a, b]→M , and ∇ a metric connection,
show that parallel translation determines an orthogonal map τ on the space Tγ(a)M . A
smooth curve γ is called a geodesic if the smooth vector field γ̇(t) along γ is parallel.
Find an example of a closed geodesic on a surface giving rise to an orthogonal map τ
which is a reflection. Assuming that the great circles on S2 parametrized with constant
speed ‖γ̇‖ with respect to the standard Riemannian metric are geodesics with respect to
the Levi-Civita connection, consider the case when γ is the concatenation of the sides
(parametrized with unit speed) of a spherical triangle: determine the orthogonal map τ
in terms of invariants of the triangle.

Paper 19 [TURN OVER



4

5 Let ∇ denote the Levi-Civita connection on a Riemannian manifold M and R
denote the Riemannian curvature tensor. For X,Y, Z,W vector fields on M , write down
(without proof) the full list of symmetries satisfied by R(X,Y, Z,W ). Define what is
meant by the Ricci tensor, proving that it is a rank 2 symmetric tensor on M .

Define the sectional curvatures and the Ricci curvatures. When dimM = 3, show
that, if the Ricci curvatures are constant at some point, then so too are the sectional
curvatures.

If (M, gM ) and (N, gN ) denote Riemannian manifolds with metrics gM and gN
respectively, show that there is a corresponding metric gM ⊕ gN on M × N . Identifying
vector fields on M or N as vector fields on the product M ×N , show that, if X is a vector
field on M and Y a vector field on N , then
(i) the Lie bracket [X,Y ] = 0 on M ×N ,
(ii) ∇XY = 0, where ∇ denotes the Levi-Civita connection on (M ×N, gM ⊕ gN ), and
(iii) R(X,Y,X, Y ) = 0, for R the corresponding Riemannian curvature tensor.

Show that there is a Riemannian metric on S2 × S2 for which the Ricci curvatures
are constant, but the sectional curvatures are not.

[You may assume that the Christoffel symbols of the Levi-Civita connection on
a Riemannian manifold (M, g) are given, with respect to a local coordinate system
x1, . . . , xm, by

Γlij =
1
2

∑
k

glk
(
∂gjk/∂xi + ∂gki/∂xj − ∂gij/∂xk

)
.

Any facts you may need concerning the curvature of S2 may also be assumed.]
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