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1 State the Excision theorem and deduce the Mayer-Vietoris theorem for singular
homology. Use these to compute the homology groups (with Z-coefficients) of RP1×RP2.

Is this space homotopy equivalent to any oriented manifold? Briefly justify your
answer.

2 What does it mean to say a connected topological space X is simply connected?
State Whitehead’s theorem concerning homotopy equivalences of simply connected finite
cell complexes. You may henceforth assume that any map of finite cell complexes is
homotopic to a cellular map (one which takes k-skeleta to k-skeleta).

Compute the cellular cohomology of the space obtained from a circle by attaching
two 2-cells by maps of degrees 2 and 3. Show that this space is homotopy equivalent to
the 2-sphere. Is it homeomorphic to the 2-sphere?

Give two compact spaces which have additively isomorphic cohomology but which
are not homotopy equivalent, briefly justifying your example.

3 Define the cup-product on cohomology and state the Künneth theorem. Let Σg

denote a closed oriented surface of genus g. Compute H∗(Σg; Z) as a ring. Interpret
Poincaré duality in terms of intersections of submanifolds, and illustrate this for H∗(Σ2; Z)
and H∗(Σ2 × Σ2; Z).

If f : Σg1 × Σg2 → Σg1 × Σg2 is homotopic to the identity and has no fixed points,
what is g1g2? Briefly justify your answer.

4 State the Poincaré duality theorem. Let M be a closed connected 3-manifold with
first Betti number b, so H1(M ; Z) ∼= Zb⊕〈Tors〉 where 〈Tors〉 denotes the torsion subgroup.
Show that H2(M ; Z) is Zb if M is orientable and is Zb−1 ⊕ Z/2 if M is not orientable.
Deduce that if M is not orientable then it has positive first Betti number.

Let the graded group K = ⊕6
j=0Kj be obtained from H by setting Kj = Hjmod3,

where H is the graded cohomology group of a closed connected orientable 3-manifold. Is
there necessarily a closed 6-manifold with graded cohomology group equal to K? Can K
ever be the graded cohomology group of a closed 6-manifold? Briefly justify your answers.
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5 Define the degree of a map f : M → N between oriented closed manifolds M and
N of the same dimension. Suppose for some n ∈ N , the set f−1(n) is finite. Associate to
each point in this set a local degree and explain how these relate to the degree of f .

(i) Show that the local degree can take any integer value.

(ii) Construct a surjective degree zero map S2 → T 2 or T 2 → S2.

(iii) Show any closed oriented manifold has a degree one map to the sphere.

(iv) For each k show there is some natural number g(k) and a degree k map Σg(k) → Σ2.

6 What is a vector bundle? Define the Grassmannian Grk(Rn) of k-planes in Rn and
the tautological bundle Etaut → Grk(Rn). Let Qtaut denote the quotient of the trivial
rank n bundle over Grk(Rn) by the tautological bundle Etaut: explain why Qtaut is a
vector bundle.

Let M be a compact manifold and E →M a vector bundle of rank d. Assume that
for every m ∈ M and v ∈ Em there is a section s of E such that s(m) = v. Show that
there is a continuous map φ : M → GrN−d(RN ), for some N , such that E = φ∗Qtaut.
Does the quotient bundle Qtaut always have a nowhere-zero section?

7 State the Thom Isomorphism theorem and deduce the Gysin exact sequence for the
cohomology of the sphere bundle of a vector bundle. Using this, compute H∗(RPn; Z/2)
as a ring.

Prove that every map f : RP4 → RP4 has a fixed point. Show there is a map
RP3 → RP3 without fixed points.

END OF PAPER
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