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1 (a) Let φt be a smooth flow on a closed manifold. Define the Anosov property for φt .

(b) State in terms of continuous quadratic forms, a sufficient condition for a flow to be Anosov.

(c) Show that the geodesic flow of a closed surface of negative curvature is Anosov. When
the curvature is constant and equal to −1, describe explicitly the stable and unstable bundles.

2 (a) State the Livsic theorem for a transitive Anosov flow.

(b) Let M be a closed oriented surface with a Riemannian metric of negative curvature. Let
SM be its unit sphere bundle, X the geodesic vector field on SM , and V the vertical vector
field. Assume the integral identity∫

SM
(XV u)2 dµ−

∫
SM

K(V u)2 dµ =
∫

SM
(V Xu)2 dµ−

∫
SM

(Xu)2 dµ .

where K is the Gaussian curvature, µ the Liouville measure and u : SM → R any smooth
function. Show that if a 1-form θ on M integrates to zero along every closed geodesic, then θ
must be exact.

(c) Does the result in the previous part hold without any curvature assumptions?

3 (a) Define the scattering relation α of a compact simple Riemannian manifold with boundary
(M,∂M, g).

(b) Let g1 and g2 be two simple metrics on M with the same boundary distance function.
Show that there exists a diffeomorphism ψ : M → M , which is the identity on the boundary,
such that g1 and ψ∗g2 coincide on ∂M (that is, g1(u, v) = ψ∗g2(u, v) for all u, v ∈ TxM and all
x ∈ ∂M).

(c) Let g1 and g2 be two simple metrics such that they have the same boundary distance
function and they agree on ∂M . Show that g1 and g2 have the same scattering relation.
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4 Let (M, g) be a closed oriented Riemannian surface with unit sphere bundle SM . Let
λ : SM → R be any smooth function and consider the flow φt on SM defined by the differential
equation

Dγ̇

dt
= λ(γ, γ̇) iγ̇ ,

where i indicates rotation by π/2 according to the orientation of the surface and γ : R → M .
Denote by F the vector field associated with φt, and let Λ(SM) be the bundle over SM whose
fibre at (x, v) ∈ SM is given by all 2-dimensional subspaces of T(x,v)SM that contain F (x, v).

(a) Define the Maslov cycle ΛV .

(b) Show that the action of φt lifts to an action φ∗t on Λ(SM).

(c) If F ∗ denotes the vector field of φ∗t , show that F ∗ is transversal to the Maslov cycle ΛV .

5 (a) Let N be a closed orientable manifold and F a non-zero vector field with flow φt . Show
that φt preserves a volume form if and only if the divergence of F with respect to any volume
form is a coboundary.

(b) Let (M, g) be a closed oriented Riemannian surface with unit sphere bundle SM . Consider
the flow φt on SM defined by the differential equation

Dγ̇

dt
= 〈E(γ), iγ̇〉 iγ̇ ,

where i indicates rotation by π/2 according to the orientation of the surface, γ : R→M and E
is a given vector field on M . As before, let F be the vector field associated with φt . Compute
the divergence of F with respect to the Liouville volume form in SM .

(c) Suppose that the flow φt in the previous part is Anosov. Show that φt preserves a volume
form if and only if E is the gradient of a smooth function. [You may use results on the kernel
of the X-ray transform provided they are clearly stated.].
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