

MATHEMATICAL TRIPOS Part III

Tuesday 3 June 2008 1.30 to 3.30

PAPER 16

ARITHMETIC COMBINATORICS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** Prove that if $\delta > 0$ and N is sufficiently large, then every subset $A \subset \{1, 2, ..., N\}$ of cardinality at least δN contains an arithmetic progression of length 3.

2 Let A be a subset of cardinality n of an Abelian group G. Prove the following assertions about A.

(i) Let $\alpha > 0$, and suppose that there are at least αn^3 quadruples $(x, y, z, w) \in A^4$ such that x + y = z + w. Then A has a subset B of cardinality at least cn such that the difference set B - B has cardinality at most Cn, where c and C are positive constants that depend on α only.

(ii) If A - A has cardinality at most Cn then 2A - 2A has cardinality at most Kn, where K is a constant that depends on C only.

(iii) If G is the group \mathbb{Z}_N , and if $n \ge \theta N$, then 2A - 2A contains an arithmetic progression of length aN^b , where a and b are positive constants that depend on θ only.

3 (i) Let G be an Abelian group and let $f: G \to \mathbb{C}$. Define the U^3 -norm $||f||_{U^3}$ of f, and prove that it is a norm.

(ii) Let α be a positive constant. Suppose that $||f_i||_{\infty} \leq 1$ for $1 \leq i \leq 4$, and that $||f_i||_{U^3} \leq \alpha$ for at least one *i*. Prove that

$$\left|\mathbb{E}_{x,d} f_1(x) f_2(x+d) f_3(x+2d) f_4(x+3d)\right| \leqslant \beta,$$

where β is a positive constant that tends to zero as α tends to zero.

(iii) Let A be a subset of \mathbb{Z}_N of cardinality at least δN , and let $\alpha > 0$. What does it mean to say that A is *quadratically* α -uniform? Prove that if α is sufficiently small and A is quadratically α -uniform, then A contains a "genuine" arithmetic progression of length 4: that is, a set of size 4 that continues to be an arithmetic progression when it is identified in the obvious way with a subset of $\{0, 1, \ldots, N-1\}$.

END OF PAPER