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Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.
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1 Let A ⊂ P[n] be an antichain. Prove that
∑n

r=0 |A ∩ [n](r)|/
(
n
r

)
≤ 1.

Let a, x1, . . . , xn ∈ Rk satisfy ||xi|| ≥ 1, 1 ≤ i ≤ n. Show that at most
(

n
bn/2c

)
of

the 2n sums
∑n

1 εixi , εi ∈ {−1, 1}, lie in the open ball with centre a and radius 1.

Suppose now that k = 1. What is the greatest number of these sums that can lie
in the open ball with centre a and radius 2?

2 A family A ⊂ P[n] is t-intersecting if |A ∩ B| ≥ t whenever A,B ∈ A. State and
prove an upper bound on the size of a t-intersecting family, and verify that it can be
attained. (You may assume the Erdős-Ko-Rado theorem.)

Does every maximal 1-intersecting family attain the bound (for t = 1)? Does every
maximal 2-intersecting family attain the bound (for t = 2)?

3 Define the Shannon capacity c(G) of a graph G, and show that c(G2) = c(G)2.

Define an orthonormal representation of G, and the Lovász θ-function θ(G).

Prove that c(G) ≤ θ(G), and deduce that c(C5) =
√

5.

4 Prove that the Shannon capacity c(GtG) of the disjoint union of the graph G and
its complement satisfies c(G tG) ≥

√
2n, where n = |G|.

Define a representation of G over a space M of polynomials, and prove that, if G
has such a representation, then c(G) ≤ dimM .

Define a graph G such that c(G tG) > c(G) + c(G), and justify your claim.
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