MATHEMATICAL TRIPOS Part III

Thursday 5 June 2008 9.00 to 11.00

PAPER 14

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let $\mathcal{A} \subset \mathcal{P}[n]$ be an antichain. Prove that $\sum_{r=0}^{n} |\mathcal{A} \cap [n]^{(r)}| / {n \choose r} \leq 1$.

Let $a, x_1, \ldots, x_n \in \mathbb{R}^k$ satisfy $||x_i|| \ge 1, 1 \le i \le n$. Show that at most $\binom{n}{\lfloor n/2 \rfloor}$ of the 2^n sums $\sum_{i=1}^{n} \epsilon_i x_i$, $\epsilon_i \in \{-1, 1\}$, lie in the open ball with centre a and radius 1.

Suppose now that k = 1. What is the greatest number of these sums that can lie in the open ball with centre a and radius 2?

2 A family $\mathcal{A} \subset \mathcal{P}[n]$ is *t*-intersecting if $|A \cap B| \ge t$ whenever $A, B \in \mathcal{A}$. State and prove an upper bound on the size of a *t*-intersecting family, and verify that it can be attained. (You may assume the Erdős-Ko-Rado theorem.)

Does every maximal 1-intersecting family attain the bound (for t = 1)? Does every maximal 2-intersecting family attain the bound (for t = 2)?

3 Define the Shannon capacity c(G) of a graph G, and show that $c(G^2) = c(G)^2$. Define an orthonormal representation of G, and the Lovász θ -function $\theta(G)$. Prove that $c(G) \leq \theta(G)$, and deduce that $c(C_5) = \sqrt{5}$.

4 Prove that the Shannon capacity $c(G \sqcup \overline{G})$ of the disjoint union of the graph G and its complement satisfies $c(G \sqcup \overline{G}) \ge \sqrt{2n}$, where n = |G|.

Define a *representation* of G over a space M of polynomials, and prove that, if G has such a representation, then $c(G) \leq \dim M$.

Define a graph G such that $c(G \sqcup \overline{G}) > c(G) + c(\overline{G})$, and justify your claim.

END OF PAPER