

MATHEMATICAL TRIPOS Part III

Tuesday 3 June 2008 9.00 to 12.00

PAPER 12

COMPLEX DIFFERENTIAL EQUATIONS

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 A function $A: (z, w, \alpha) \mapsto A_{\alpha}(z, w)$ is analytic on the domain

$$\{(z, w, \alpha) \in \mathbb{C}^3 : |z| < R_1, |w| < S_1, |\alpha| < T_1\}.$$

Show that, for a suitable choice of $r, \varepsilon > 0$, the unique solution $f_{\alpha} : \mathbb{D}(0, r) \to \mathbb{C}$ of

$$f'_{\alpha}(z) = A_{\alpha}(z, f_{\alpha}(z)) ; \qquad f_{\alpha}(0) = 0$$
(1)

exists and varies analytically with $\alpha \in \mathbb{D}(0, \varepsilon)$.

Show how to deduce that the solution of a differential equation

$$f'(z) = A(z, f(z)) ; \qquad f(0) = w_o$$

varies analytically with the initial value w_o .

Let $f_{\alpha} : D(0,r) \to \mathbb{C}$ be the solution of the differential equation (1) given above. Suppose that f_0 takes the value w_1 with multiplicity $k \ge 1$ at a point $z_1 \in \mathbb{D}(0,r)$. Prove or disprove the following statements.

- (a) f_{α} takes the value w_1 in $\mathbb{D}(0, r)$ for $|\alpha| < \delta$ and δ sufficiently small.
- (b) f_{α} takes the value w_1 with multiplicity k at some point of $\mathbb{D}(0, r)$ for $|\alpha| < \delta$ and δ sufficiently small.

2 Explain what it means to say that a linear differential equation

$$\boldsymbol{F}'(z) = \boldsymbol{A}(z)\boldsymbol{F}(z) \; ,$$

where \mathbf{F} takes values in \mathbb{C}^N , has a regular singularity. What is the residue of \mathbf{A} at such a singularity?

In the case where

$$A(z) = \frac{R}{z}$$

for a constant matrix R describe how the residue is related to the monodromy group of the differential equation.

Let A be an analytic, matrix-valued function on all of the Riemann sphere except for a finite number of regular singular points. Show that the sum of the residues at these points is **0** and identify A(z) in terms of these residues.

Let B, C be two constant $N \times N$ matrices. Find the set S of singular points of the differential equation:

$$F'(z) = \left(rac{B+zC}{1-z^3}
ight)F(z)$$
.

Show that any linear differential equation on the entire Riemann sphere, that has all of its singular points regular and lying in S, must be of this form.

Paper 12

3

3 The differential equation

$$f'(z) = A(z, f(z)) \tag{3}$$

involves a rational function A(z, w) and has no movable branch points in all of the Riemann sphere. Show that (3) is a Riccati equation.

Show that we can write any solution of a Riccati equation as

$$f(z) = \frac{f_1(z)}{f_2(z)}$$

where $\mathbf{F}(z) = \begin{pmatrix} f_1(z) \\ f_2(z) \end{pmatrix}$ is an analytic solution of a suitable linear differential equation.

Let g, h, j be three solutions of the Riccati equation that take distinct values at a point z_o . Show that every solution of the differential equation can be written as a rational function of g, h and j.

4 Let (z_n) be a sequence of distinct points in $\mathbb{C} \setminus \{0\}$ that converge to ∞ . Prove that there is an analytic function $f : \mathbb{C} \to \mathbb{C}$ that has zeros at the points (z_n) and nowhere else.

Denote the principal branch of the logarithm by Log. Prove that there are constants C_j with the following properties.

(a) If $|w| \leq \frac{1}{2}$, then $|\text{Log}(1-w)| \leq C_1 |w|$. (b) If $|w| \geq \frac{1}{2}$, then $\log(1+|w|) \leq C_2 |w|$. (c) For all $w \in \mathbb{C}$, $|\text{Log}(1-w)| \leq C_3 |w|$.

Deduce that, when the sequence (z_n) satisfies $\sum \frac{1}{|z_n|} < \infty$, then the infinite product

$$P(z) = \prod \left(1 - \frac{z}{z_n}\right)$$

is an analytic function satisfying

$$|P(z)| \leqslant \exp\left(C|z|\right)$$

for some constant C.

Paper 12

[TURN OVER

5 Let $f : \mathbb{C} \to \mathbb{P}$ be a meromorphic function with zeros (z_n) and poles (p_n) repeated according to their multiplicity. Let $f(0) \neq 0, \infty$. Define the *Nevanlinna characteristic of* f and prove Nevanlinna's First Theorem.

Deduce Jensen's formula:

$$\int_{0}^{2\pi} \log|f(Re^{i\theta})| \ \frac{d\theta}{2\pi} = \sum\left\{\log\frac{R}{|z_n|} : |z_n| < R\right\} \ - \ \sum\left\{\log\frac{R}{|p_n|} : |p_n| < R\right\} + \log|f(0)|$$

Show that, when $f : \mathbb{D} \to \mathbb{C}$ is a non-constant, bounded, analytic function, the zeros of f form a Blaschke sequence.

6 Explain what it means to say that a singularity of a differential equation is fixed or movable?

State and prove Painlevé's Determinateness theorem.

Determine the singularities of the differential equation

$$f'(z) = \frac{f(z)}{(z+1)(f(z)^2 - z^2)}$$

and determine whether they are fixed or movable.

END OF PAPER

Paper 12