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1 Describe briefly the properties of the set IX of isometries of a compact metric space
(X, d). What does it mean to say that IX acts transitively on X?

Suppose that IX acts transitively on (X, d). Show that there is a unique Borel
probability measure µ on X such that

∫
X

f(x) dµ(x) =
∫

X
f(g(x)) dµ(x) for every g ∈ IX

and f ∈ C(X).

[You may assume that the set P (X) of Borel probability measures on X is a compact
metrizable subset of C(X)∗ under the weak*-topology. You may assume Hall’s marriage
theorem: if so, you should state it clearly.]

2 What does it mean to say that a random variable X is sub-Gaussian, with exponent
b? Show that a bounded random variable X is sub-Gaussian if and only if E(X) = 0.

Suppose that X is sub-Gaussian, with exponent b. Show that P(|X| > R) 6
2e−R2/2b2 . Show further that ‖X‖2k 6 b

√
2k, for k > 2. Show that ‖X‖3

2 6 4b2 ‖X‖1.

[If you use Littlewood’s inequality, you should prove it.]

3 Suppose that E is the ellipsoid of maximum volume contained in the unit ball BE of
a d-dimensional normed space (E, ‖.‖E), and that | . | is the inner-product norm with unit
ball E . State inequalities relating ‖.‖E and | . |. Show that there exists a | . |-orthonormal
basis (e1, . . . , ed) with ‖ei‖E > 1/4 for 1 6 i 6 d/2.

Use this orthonormal basis to identify E with Rd, and let γd be normalized Gaussian
measure on Rd. Show that there is a positive constant c, which does not depend on d or
‖.‖E , such that ∫

Rd

‖x‖E dγd(x) > c
√

log d.

4 Define the volume ratio vr(E) of a finite-dimensional normed space (E, ‖.‖E). Show
that there exists a constant C, independent of k, such that vr(l2k

1 ) 6 C.

Suppose that E has dimension 2k. Let E be the ellipsoid of maximum volume
contained in the unit ball BE of (E, ‖.‖E), and let | . | be the inner-product norm with
unit ball E . Show that there exists a constant L, independent of k and ‖.‖E , such that there
exist two k-dimensional subspaces of E, orthogonal with respect to the inner product, on
each of which

‖x‖E 6 |x| 6 L ‖x‖E .

[You should establish any results about ε-nets that you need. The Euclidean ball
in R2k has volume πk/k!.]
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5 Suppose that P and Q are probability measures on a compact metric space (X, d).
Show that the following quantities are equal:

(i) md(P,Q) = sup{
∫

X
f dP +

∫
X

g dQ : f, g ∈ C(X), f(x) + g(y) 6 d(x, y)};

(ii) W (P,Q) = inf{
∫

X×X
d(x, y) dπ(x, y) : π ∈ P (X, Y ) with marginals P and Q}.

Show also that they are equal to the quantities

(i) mL(P,Q) = sup{
∫

X
f dP +

∫
X

g dQ : f, g ∈ Lip(X) : f(x) + g(y) 6 d(x, y)};

(iv) γ(P,Q) = sup{|
∫

X
f dP−

∫
X

f dQ| : f ∈ Lip(X), ‖f‖L 6 1}.

END OF PAPER
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