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1 Let X be a scheme. What does it mean to say that X is integral? Show that
Spec R is integral if and only if R is an integral domain.

Let X be a scheme whose connected components are open. Show if e ∈ Γ(X,OX)
is an idempotent (i.e. e2 = e) then V ((1− e)) is an open and closed subset of X. Deduce
that there is a bijection between the set of connected components of X, and the set of
idempotents in Γ(X,OX) which are indecomposable (i.e. cannot be written as the sum of
two non-zero idempotents).

2 Let X be a scheme of characteristic p > 0. Define the Frobenius morphism
FX :X → X. Show that FX is an isomorphism if and only if all the local rings OX,x

are perfect.

Let f :X → Y be a finite surjective morphism of normal schemes of characteristic
p. Identify the function field k(Y ) with a subfield of k(X) via f∗. Show that

(i) if k(X)p ⊂ k(Y ) then there is a unique morphism g:Y → X with FX = g ◦ f ;

(ii) if k(X)p ⊃ k(Y ) then there is a unique morphism h:X → Y such that
f = h ◦ FX .

3 What does it mean to say that a morphism of schemes is flat? Show that an open
immersion is always flat, and that a closed immersion between connected schemes is flat
if and only if it is an isomorphism.

Let f :X → Y be a finite and flat morphism of irreducible schemes. For a point
y ∈ Y let Xy = X ×Y Spec k(y) denote the fibre of f above y. Show that the function
y 7→ dimk(y) Γ(Xy,OXy

) is constant.

Hence show that if C is a curve (integral scheme of dimension one) over a field and
π:C ′ → C is its normalisation, then π is flat if and only if C ′ = C.
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4 Let R be a discrete valuation ring with uniformiser π and field of fractions F . Let
X be the closed subscheme of P3

R = ProjR[x0, x1, x2, x3] defined by the ideal

(x2
1 − π2x0x2, x1x3 − πx2

2, x1x2 − πx0x3, x0x
2
3 − x3

2)

(i) Show that there is an isomorphism P1
F ' X ⊗R F given by (y0, y1) 7→

(y3
0 , πy2

0y1, y0y
2
1 , y3

1).

(ii) Show that the open subscheme {x3 6= 0} ⊂ X is isomorphic to A1
R. Show also

that if U ⊂ X is the open subscheme {x0 6= 0} then U = Spec B is affine and B is a
torsion-free R-module. Deduce that X is proper and flat over Spec R.

(iii) Let s ∈ Spec R be the closed point. Show that the base change map
Γ(X,OX) → Γ(Xs,OXs

) is not an isomorphism.

5 Let F be a quasi-coherent sheaf on a separated scheme X. Define the Čech
cohomology groups Hp(X,F) of F on X. Explain why, for any exact sequence 0 →
F ′ → F → F ′′ → 0, there is a long exact sequence of cohomology

Hp(X,F ′) → Hp(X,F) → Hp(X,F ′′) → Hp+1(X,F ′) → . . .

Let k be a field and X the complement of the origin in A2
k. Show that H1(X,OX) is

infinite-dimensional.
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