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LAMBDA–CALCULUS

Attempt THREE questions.

There are FIVE questions in total.

The questions carry equal weight.

For all m < n, results which you have proved in answering question m (or which
would have been proved if you had attempted question m) may be assumed in your
answer to question n.
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1 Explain what is meant by a λ-term, and by β-equivalence of two λ-terms. Prove
the Church–Rosser theorem, that two λ-terms are β-equivalent if and only if they have a
common β-reduct. Deduce that an arbitrary λ-term is β-equivalent to at most one term
in normal form. Give an example of a λ-term having no normal form.

2 Explain what is meant by a CL-term (or combinator term) in a given set X of free
variables, and by the statement that two CL-terms are weakly equivalent. Show how to
associate with each λ-term M a CL-term M∗, with the same set of free variables, in such
a way that x∗ = x for each variable x, (MN)∗ = M∗N∗ for all M and N , and M and N
are β-equivalent whenever M∗ and N∗ are weakly equivalent. By considering the λ-terms
λx.x and λx.((λy.y)x), or otherwise, show that the converse of the last statement fails.

[You may assume the Church–Rosser property for weak equivalence of CL-terms.]

3 (a) Explain what is meant by a c.p.o. (with least element) and by a continuous
map of c.p.o.’s. If D and D′ are c.p.o.’s, show that the set [D→D′] of continuous maps
D → D′ can be given the structure of a c.p.o. Deduce that the category of c.p.o.’s and
continuous maps between them is cartesian closed.

(b) Let C be a cartesian closed category, and D an object of C satisfying DD ∼= D.
Explain briefly how the set of morphisms D → D in C may be made into a model of the
(untyped) λ-calculus satisfying the β- and η-rules (i.e., such that βη-equivalent terms have
the same interpretation).

4 Explain what is meant by an embedding–projection pair of continuous maps
between c.p.o.’s. Given a c.p.o. D0, define Dn = [Dn−1→Dn−1] for n > 0; show that if
we are given an embedding–projection pair (φ0 : D0 → D1, ψ0 : D1 → D0), we may obtain
such pairs (φn : Dn → Dn+1, ψn : Dn+1 → Dn) for all n by setting

φn(f) = φn−1 ◦ f ◦ ψn−1 , ψn(g) = ψn−1 ◦ g ◦ φn−1 .

Explain briefly how this result may be used to construct a c.p.o. D∞ satisfying
D∞ ∼= [D∞→D∞], equipped with embedding–projection pairs (Dn → D∞, D∞ → Dn)
for all n.
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5 Let C be a cartesian closed category having just two objects 1 (the terminal object)
and D, and suppose C is not a preorder. Show that we necessarily have D×D = DD = D,
and that the monoid M of morphisms D → D in C comes equipped with distinguished
elements π, π′ and ε, a unary operation (−)∗ and an additional binary operation 〈−,−〉
satisfying

π〈x, y〉 = x , π′〈x, y〉 = y , 〈πz, π′z〉 = z ,

ε〈x∗π, π′〉 = x and (ε〈yπ, π′〉)∗ = y

for all x, y, z ∈ M . Conversely, given a monoid M with this additional structure, show
that the element (π′)∗ is idempotent, and hence construct a two-object cartesian closed
category such that M appears as the monoid of endomorphisms of its non-terminal object.
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