MATHEMATICAL TRIPOS Part III

Friday 8 June 2007 9.00 to 12.00

PAPER 87

LAMBDA-CALCULUS

Attempt **THREE** questions.

There are **FIVE** questions in total.

The questions carry equal weight.

For all m < n, results which you have proved in answering question m (or which would have been proved if you had attempted question m) may be assumed in your answer to question n.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Explain what is meant by a λ -term, and by β -equivalence of two λ -terms. Prove the Church–Rosser theorem, that two λ -terms are β -equivalent if and only if they have a common β -reduct. Deduce that an arbitrary λ -term is β -equivalent to at most one term in normal form. Give an example of a λ -term having no normal form.

2 Explain what is meant by a CL-term (or combinator term) in a given set X of free variables, and by the statement that two CL-terms are weakly equivalent. Show how to associate with each λ -term M a CL-term M^* , with the same set of free variables, in such a way that $x^* = x$ for each variable x, $(MN)^* = M^*N^*$ for all M and N, and M and N are β -equivalent whenever M^* and N^* are weakly equivalent. By considering the λ -terms $\lambda x.x$ and $\lambda x.((\lambda y.y)x)$, or otherwise, show that the converse of the last statement fails.

[You may assume the Church–Rosser property for weak equivalence of CL-terms.]

3 (a) Explain what is meant by a c.p.o. (with least element) and by a continuous map of c.p.o.'s. If D and D' are c.p.o.'s, show that the set $[D \to D']$ of continuous maps $D \to D'$ can be given the structure of a c.p.o. Deduce that the category of c.p.o.'s and continuous maps between them is cartesian closed.

(b) Let \mathcal{C} be a cartesian closed category, and D an object of \mathcal{C} satisfying $D^D \cong D$. Explain briefly how the set of morphisms $D \to D$ in \mathcal{C} may be made into a model of the (untyped) λ -calculus satisfying the β - and η -rules (i.e., such that $\beta\eta$ -equivalent terms have the same interpretation).

4 Explain what is meant by an embedding-projection pair of continuous maps between c.p.o.'s. Given a c.p.o. D_0 , define $D_n = [D_{n-1} \rightarrow D_{n-1}]$ for n > 0; show that if we are given an embedding-projection pair $(\phi_0: D_0 \rightarrow D_1, \psi_0: D_1 \rightarrow D_0)$, we may obtain such pairs $(\phi_n: D_n \rightarrow D_{n+1}, \psi_n: D_{n+1} \rightarrow D_n)$ for all n by setting

$$\phi_n(f) = \phi_{n-1} \circ f \circ \psi_{n-1} \quad , \quad \psi_n(g) = \psi_{n-1} \circ g \circ \phi_{n-1} \; .$$

Explain briefly how this result may be used to construct a c.p.o. D_{∞} satisfying $D_{\infty} \cong [D_{\infty} \to D_{\infty}]$, equipped with embedding-projection pairs $(D_n \to D_{\infty}, D_{\infty} \to D_n)$ for all n.

5 Let \mathcal{C} be a cartesian closed category having just two objects 1 (the terminal object) and D, and suppose \mathcal{C} is not a preorder. Show that we necessarily have $D \times D = D^D = D$, and that the monoid M of morphisms $D \to D$ in \mathcal{C} comes equipped with distinguished elements π, π' and ϵ , a unary operation $(-)^*$ and an additional binary operation $\langle -, - \rangle$ satisfying

$$\begin{aligned} \pi \langle x, y \rangle &= x \quad , \quad \pi' \langle x, y \rangle = y \quad , \quad \langle \pi z, \pi' z \rangle = z \quad , \\ \epsilon \langle x^* \pi, \pi' \rangle &= x \quad \text{and} \quad (\epsilon \langle y \pi, \pi' \rangle)^* = y \end{aligned}$$

for all $x, y, z \in M$. Conversely, given a monoid M with this additional structure, show that the element $(\pi')^*$ is idempotent, and hence construct a two-object cartesian closed category such that M appears as the monoid of endomorphisms of its non-terminal object.

END OF PAPER