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1 The energy functional of a quantum fluid described by a wavefunction ψ is given
by

E =
∫ [

~2

2m
|∇ψ|2 +

V0

2
|ψ|4 +

W0

3
|ψ|6

]
dx,

where V0 and W0 are the effective two- and three-body interaction potentials.

(i) Write down the corresponding (generalised) Gross-Pitaevskii equation, given by

i~ψt = δE/δψ∗.

(ii) Write down the stationary equation for the equilibrium state of the fluid for a
given number of particles.

(iii) Relate the chemical potential, µ, to the uniform number density, n0 = |ψ0|2 of
the ground state ψ0 =const.

(iv) Show that the dimensionless form of the stationary equation you obtained in
(ii) can be written as

∇2ψ̃ + (1− α|ψ̃|2 − β|ψ̃|4)ψ̃ = 0, ψ̃ → 1 at infinity, (∗)

where α and β are constants. Specify α, β and the unit of distance.

(v) Use (∗) to write down the equation for the amplitude R(r) of the straight-
line vortex of winding number N , that is positioned along the z−axis in cylindrical
coordinates (r, θ, z). Show that at large r the amplitude can be approximated by
R(r) ∼ 1− p/r2 +O(r−3) and specify the constant p in terms of β and N only.
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2 Consider the non-dimensional Gross-Pitaevskii equation

−2iψt = ∇2ψ + (1− |ψ|2)ψ.

(i) Write down the linearised equations for the disturbances of the real and
imaginary parts of ψ = 1 + u + iv with respect to the ground state and find the
differential equation for u that does not depend on v. Consider the disturbances of the
form u = exp[i(k · x− ωt)] and find the dispersion relationship ω(k).

(ii) Write down the equation for solitary waves moving with velocity U in the
positive z-direction in the frame of reference in which the solitary wave is stationary.

(iii) Given the energy

E =
1
2

∫
|∇ψ|2 dV +

1
4

∫
(1− |ψ|2)2 dV

and momentum
p =

1
2i

∫
[(ψ∗ − 1)∂zψ − (ψ − 1)∂zψ

∗] dV,

show that

(a) U = ∂E/∂p where the the derivatives are taken along the sequence of solitary
waves;

(b) E =
∫
|∂zψ|2 dV .
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3 Consider a two-dimensional Bose-Einstein condensate in a trap described by the
Gross-Pitaevskii equation in polar coordinates (r, θ)

i~
∂ψ

∂t
= − ~2

2m
∇2ψ +

1
2
mω2r2ψ + V0|ψ|2ψ,

where ~ is the Plank constant, m is the particle mass, ω is the trap frequency, and
V0 = 4π~2a/m is the effective pair interaction, a being the scattering length. The total
number of particles in the trap is N =

∫
|ψ(x)|2 dx.

(i) Give a definition of the Thomas-Fermi (TF) regime in terms of the relationship
between N, a, ω. Find the approximation for the ground state of a condensate in the TF
regime.

(ii) Calculate the energy of a vortex with winding number N = 1 in the centre
of the condensate in the TF regime. You can use the fact that the vortex energy in a
uniform condensate is given by Ev = πn0

~2

mN
2[log(L/ξ) + L0N ], where n0 is the density

of the ground state, ξ is the healing length, L is the container radius, and L0N are known
constants.

[Hint: you may assume that the condensate radius R� L� ξ .]

(iii) Find the total angular momentum of condensate with a vortex of winding
number N = 1 in the centre of the condensate.

(iv) Redo (ii) and (iii) for vortices of arbitrary N .
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4 The effective Gross-Pitaevskii equation that describes the evolution of the exciton-
polariton condensate with a wavefunction ψ has the form

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V0|ψ|2ψ + i(γ − Γ|ψ|2)ψ,

where γ and Γ are positive constants representing the effective rate of creating new con-
densate particles and the particles’ decay rate due to many particle collisions respectively,
and V0 is the effective pair interaction.

For the condensate in equilibrium:

(i) Write down the equation for the wavefunction.

(ii) Write down the hydrodynamical equations for the number density n = |ψ|2 and
the velocity potential φ and express ∇ · (n∇φ) in terms of γ,Γ, n and ~.

(iii) Find the wave function of the condensate assuming the condensate has constant
number density and a constant velocity in the x direction. Discuss the range of parameters
for which such a solution exists.

(iv) The condensate in equilibrium is contained in an infinitely long right cylinder.
The number of particles per unit length along the cylinder axis is N . Using the continuity
equation, or otherwise, show that ∫

S

n2 dx = qN,

where S is the cylinder cross-section orthogonal to the cylinder axis. You need to specify
q in terms of the parameters of the system.

[Hint: note that n = 0 on the surface of the cylinder.]

END OF PAPER
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