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1 A sea snake of length L has a uniform circular cross-section and swims at speed U
by passing a constant-amplitude, planar wave of displacement down its body at constant
speed c relative to the snake’s centreline, speed V (= αc where α < 1) relative to the snake
in the x-direction (unit vector i). The force exerted on an element ds of the snake consists
of two parts:

- a normal component KN |w.n| (w.n)nds
- a tangential component KT |w.t|3/2 ts1/2ds

where n, t are unit vectors normal and tangential to the centreline, w is the velocity of
the fluid far away relative to ds, and KN , KT are constants.

Explain briefly the reason for each of the above terms taking the form it does in
this nonlinear, high-Reynolds-number version of Resistive Force Theory, and discuss any
approximations made.

Deduce that the mean swimming speed U will be given by the following equation:

KN (V − U)2
∫ L

0

∣∣∣∣∣dŶ

ds

∣∣∣∣∣
3

ds = KT

∫ L

0

∣∣∣∣c− (V − U)
dX

ds

∣∣∣∣3/2
dX

ds
s1/2ds

where the material point at s on the animal’s centreline has position vector
[X(s, t), Y (s, t)].

In the case for which the lateral displacement of the centreline is given in the frame
of reference moving with the wave by Y (s) = β sin ks, where βk � 1 and k = 2π/L,
deduce that

4β3k2KN (V − U)2 ≈ KT L3/2(c− V + U)3/2. (1)

Instead of using the above model, use Lighthill’s small-amplitude elongated body
theory to estimate the thrust exerted by the snake. Balance this against the viscous drag,
estimated using boundary-layer-theory, and show that equation (1) is replaced by:

3
8
MAβ2k2(V 2 − U2) = KT (c− V + U)3/2.L3/2,

where MA is the added mass per unit length.

Discuss some of the weaknesses of the above models.
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2 A bacterium consists of a spherical body of radius a and a thin, rigid, helical
flagellum of length L which rotates about its axis, which is the extension of a line through
the centre of the sphere and a given point on its surface. The helix has radius b, makes
an angle α with the axial direction, and has angular velocity of magnitude Ωo relative to
the body. The bacterium swims in a fluid of viscosity µ.

Use low-Reynolds-number resistive force theory to analyse the motion and show
that the swimming velocity −U i and the angular velocity Ωi of the cell body are given by
the following equations:

(KN sin2 α + KT cos2 α + 6πµ
a

L
)U = (KN −KT )b(Ωo − Ω) sinα cos α

bL(KN −KT ) sinα cos αU = (KN cos2 α + KT sin2 α)b2L(Ωo − Ω)− 8πµΩa3,

where i is the unit vector parallel to the axis of the helix, and KN ,KT are the normal and
tangential force coefficients of the flagellum.

Calculate U for the case KN/KT = 2, α = π/4, a = b

[The viscous torque on a sphere rotating with angular velocity Ω in a fluid otherwise
at rest is −8πµa3Ω. The details of the motion of the flagellum in the immediate vicinity
of the cell body may be ignored.]
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3 A vertical, cylindrical pipe of radius R contains a dilute suspension of spherical,
bottom-heavy, swimming micro-organisms that are denser than the fluid in which they
are swimming. The suspension flows downward in the pipe under the action of a constant
effective pressure gradient

dp̂

dẑ
= +

4µWo

R2
,

where Wo is a velocity scale, µ is the fluid viscosity and ẑ is measured vertically upwards.Aˆ
over a quantity denotes that it is a dimensional variable. Neglecting sedimentation relative
to cell swimming and assuming that the cell swimming direction is given deterministically
by a viscous-gravitational torque balance, but allowing for a scalar cell diffusivity,
investigate possible steady flows in which the fluid has zero radial velocity and has vertical
velocity −Wo(1− r̂2/R2) + ŵ(r̂), and the cell concentration is n̂(r̂), where r̂ is the radial
coordinate. Write down and explain the governing equations and boundary conditions,
including the contribution to the stress tensor arising from the cells’ swimming stresslets,
and show that the equations can be reduced to the following non-dimensional form:

(1)
dn

dr
= χn sin θ

(2)
1
r

d

dr
(r

dw

dr
) +

σ

r

d

dr
(rn sin 2θ) = γn

(3) sin θ = −λ
d

dr
(r2 + w)

where

χ =
VcR

D
, σ =

SNoR

2µWo
, γ =

g4ρυNoR
2

ρµWo
, λ =

WoB

2R

and Vc is the cell swimming speed,B the gyrotactic time-scale,D the cell diffusivity,S the
stresslet strength of a single cell, No the average cell concentration, ρ the fluid’s density,
ρ +4ρ the cell’s density and υ the cell volume. θ is the angle between the cell swimming
direction and the vertical.

You may assume that BWo/R < 1 and that the ẑ−component of div (n̂p̂p̂) is

1
r̂

d

dr̂
[r̂n̂(r̂) sin θ cos θ] .

Why can the r̂-component of the divergence of the particle stress tensor be ignored?

Analyse the case γ � 1, σ = γσ1, σ1 = O(1), λχ = O(1), by taking

w(r) ≈ γw1(r), n ≈ no(r) + γn1(r), θ ≈ θ0 + γθ1.

Show that no(r) = nooe
−λχr2

where noo = λχ
1−e−λχ .

Derive an equation for dw1
dr as a function of r and solve it in the form of an integral.

Show that the perturbation w to the pipe flow is negative unless σ1 is sufficiently
negative. Discuss this result.
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4 A dilute suspension of bottom-heavy, randomly swimming microorganisms, all
of which swim with constant speed Vs, is arranged in such a way that the probability
distribution function (pdf) of cell orientation p at time t = 0, f(p,0), is isotropic. We
wish to calculate how the mean swimming velocity Vc varies with time.

Write down the Fokker-Planck equation for the time-dependent pdf, f(p, t), and
show that it reduces in this case to

B
∂f

∂t
− sin θ

∂f

∂θ
− 2 cos θf =

BDr

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
, (1)

where θ is the angle between p and the upwards vertical (unit vector k), B is the gyrotactic
time-scale and Dr is the rotational diffusivity, which represents the randomness of cell
swimming.

(i) Find the steady-state solution of equation (1), fo(θ),and calculate the corresponding
value of Vc.

(ii) In the case Dr = 0, solve equation (1), subject to the appropriate initial condition,
by using the substitutions f(θ, t) = 1/g(x, t), x = cos θ, and seeking a solution that
is quadratic in x (or otherwise), to show that

f(θ, t) =
α/π

[1 + α− (1− α)x]2

where α = e−2t/B . Hence find Vc in this case.

(iii) Verify that the limit of Vc from part (i) as λ−1 = BDr → 0 is the same as the limit
of Vc from part (ii) as t→∞, despite the neglect of diffusion in the latter case. Will the
time-scales for these limits to be achieved also be the same?

END OF PAPER
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