
MATHEMATICAL TRIPOS Part III

Friday 1 June 2007 9.00 to 12.00

PAPER 8

INTRODUCTION TO FUNCTIONAL ANALYSIS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury Tag
Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 State the Baire Category theorem and use it to prove the principle of uniform
boundedness.

Let A be the array aij with aij ∈ R for i, j > 1. We say that a sequence
x = (x1, x2, . . .) with xj ∈ R has A limit A(x) if the sum

Ai(x) =
∞∑

j=1

aijxj

exists and Ai(x) → A(x) as i → ∞. We say that A is regular if, whenever xj → x0 as
j →∞, the sequence x has A limit x0. Show that A is regular if and only if the following
three conditions hold.

(α) There exists an M such that
∑∞

j=1 |aij | 6 M for all i.

(β) aij → 0 as i →∞ for each j.

(γ)
∑∞

j=1 aij → 1 as i →∞.

Verify that if B = brs with brs = r−1 for 1 6 s 6 r and brs = 0 otherwise, then
conditions (α), (β) and (γ) hold so B is regular. Find a bounded sequence w which has
no B limit and prove it has this property.

By using conditions (α), (β) and (γ), or otherwise show that, if A is regular, then
we can find a bounded sequence y such that y has no A limit.

Consider the space l∞ of bounded sequences with the standard norm ‖x|| =
supn |xn|. Show that, if A is regular, then

EA = {x ∈ l∞ : x has a A limit}

is closed and nowhere dense in l∞. Deduce that, given a countable collection A[m]

[m = 1, 2, . . .] we can find a bounded sequence u such that u has no A[m] limit for any
m > 1.

By using the Bolzano-Weierstrass theorem, or otherwise, show that given any
bounded sequence x we can find a regular A such that x has a A limit.
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2 (i) Let V be a real normed space with a countable dense subset y1, y2, . . . . Show
without using the the axiom of choice that if U is a subspace of V and T : U → R is a
continuous linear function, we can find a continuous linear function T̃ : V → R such that
T̃ (u) = T (u) for all u ∈ U and ‖T̃‖ = ‖T‖.

(ii) Define the extreme points of a set in a real vector space. Give an example of a
non-empty convex set in R2 with no extreme points. Let l∞ be the space of bounded real
sequences, l1 the space of absolutely convergent real sequences and l2 the space of square
summable real sequences, each with their usual norms. Find the extreme points of the
closed unit ball for each case proving your statements. (You may find it useful to think
about the two dimensional analogues.)

[The two parts of the question are not related. The first part carries twice the
weight of the second.]

3 Prove the theorem of Gelfand-Mazur. (If you use properties of the resolvent or
spectrum you should prove them.) Develop the theory of maximal ideals to the point
where you can establish a bijection with multiplicative linear functionals.

4 Suppose that B is a commutative Banach algebra with unit with maximal ideal
space M. Show that, if B has an involution f 7→ f∗, then the Gelfand transform
B → C(M) is a norm preserving isomorphism with (f∗)̂ = (f )̂−.

Let V be a finite dimensional complex inner product space. Use the result of the
first paragraph to show that, if α, β : V → V are linear maps and α, β and the adjoints α∗,
β∗, all commute then we can find a set π1, π2, . . . πm of commuting projections together
with λj , µj ∈ C such that

α =
m∑

j=1

λjπj and β =
m∑

j=1

µjπj .

END OF PAPER

Paper 8


	Rubric
	1
	2
	3
	4

