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The Papkovich–Neuber representation of Stokes flow is

u = ∇(x · Φ + χ)− 2Φ, p = 2µ∇ ·Φ, where ∇2χ = 0 and ∇2Φ = 0.

1 State and prove the Minimum Dissipation Theorem for Stokes flow, making it clear
which flows are compared by the theorem.

The annular region between two concentric rigid spheres of radii a and b (with
b > a) is filled with fluid of viscosity µ. The outer sphere is held stationary, while the
inner sphere is made to rotate with angular velocity Ω. Determine the fluid velocity.

Show explicitly that the Papkovich–Neuber solution gives p = 0. Explain how this
result could also be obtained without detailed calculation from simple properties of Stokes
flow.

Calculate the stress field in the fluid. Deduce that the couple G that must be
applied to the inner sphere to maintain the motion is given by

G =
8πµa3b3Ω
b3 − a3

.

Comment on the form of this result for a � b and for b− a � a.

A number of force-free, couple-free rigid particles are added to the fluid between
the spheres, but the concentric position and relative angular velocity Ω of the inner sphere
are maintained by application of the necessary force and couple to the inner sphere. Show
that the component of the couple in the direction of Ω is increased, being careful to explain
each step of the argument.
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2 Fluid of viscosity µ surrounds a very long axisymmetric fluid bubble of radius
r = a(z, t) (in cylindrical polar coordinates) and viscosity λµ, where λ � 1. The bubble
radius a varies slowly with z, so that |∂a/∂z| � 1. The ends of the bubble are far enough
away to be neglected, and the flow is driven only by surface tension.

Explaining any approximations made to the boundary conditions on r = a, show
that the external flow is approximately radial and that the pressure P (z, t) in the bubble
is given by

P =
2µ

a

∂a

∂t
+

γ

a
, (1)

where γ is the coefficient of surface tension.

(a) Assume that λ is sufficiently small that the pressure gradient inside the bubble
can be neglected. Show that if a(z, t) = f(t) +

√
2g(t) sin(kz), where k is a constant,

ak � 1 and f >
√

2g > 0, then

P (t) =
γf(t)
α0

,
df

dt
= − γ

2µ

g2(t)
α0

and
dg

dt
=

γ

2µ

f(t)g(t)
α0

,

where α0 is a constant to be determined in terms of f(0) and g(0).

Find the linear growth rate of a small sinusoidal disturbance to a uniform cylinder
of radius a0.

Show also that the minimum radius amin continues to decrease monotonically as
the disturbance grows in the nonlinear regime. [You do not need to solve the equations for
f and g explicitly.]

(b) Show that the pressure gradient inside the bubble cannot be neglected when
amink � λ. Using lubrication theory, show that the evolution is then given by

2a
∂a

∂t
=

1
8λµ

∂

∂z

{
a4 ∂

∂z

(
2µ

a

∂a

∂t
+

γ

a

)}
. (2)

Just before the bubble breaks at some time t∗ and position z∗, there is a local
similarity solution of (2) in which a ∝ (t∗ − t)p and z − z∗ ∝ (t∗ − t)q as t → t∗. Use
scaling estimates of the different terms to determine the exponents p and q, and to define
dimensionless similarity variables A(ζ) and ζ such that

ζAA′ −A2 =
1
16

[
A4

(
2ζA′ + 1

A

)′
]′

.

[You are not required to solve this equation.]
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3 Insoluble surfactant with concentration C(x, t) resides on the surface of a thin
layer of fluid of thickness h(x, t), viscosity µ and density ρ that lies on a rigid horizontal
surface. Diffusion of surfactant is negligible, and the coefficient of surface tension is given
by γ(C) = γ0 − AC, where γ0 and A are constants. The variations of h and C are such
that lubrication theory is applicable throughout.

Explain why
∂C

∂t
+

∂[u(h)C]
∂x

= 0,

where u(h) is the horizontal velocity at the surface. Show that

∂h

∂t
=

A

2µ

∂

∂x

(
h2 ∂C

∂x

)
+

ρg

3µ

∂

∂x

(
h3 ∂h

∂x

)
− 1

3µ

∂

∂x

(
h3 ∂

∂x

(
γ

∂2h

∂x2

))
, (3)

and obtain the corresponding equation for the evolution of C.

Assume that the hydrostatic and capillary pressure gradients are both negligible.
A fixed mass M =

∫
C dx of surfactant is released at x = 0 and t = 0 onto a layer that

initially has uniform thickness h0 and C = 0. Use scaling arguments to show that the
extent −xN 6 x 6 xN of the spreading pool of surfactant satisfies xN (t) ∝ t1/3.

Deduce the form of the similarity solution and derive two ordinary differential
equations and two integral constraints that are satisfied by the dimensionless similarity
functions H(η) and Γ(η) over the range 0 6 η 6 ηN (assuming symmetry about η = 0).
Solve the differential equations to show that H and Γ are linear functions of η, and use
the integral constraints to show that

xN = (6MAh0t/µ)1/3.

Explain why the hydrostatic and capillary terms in (3) cannot both be negligible
near x = xN . Let ∆ be the width of the region where at least one of these terms is
significant. Use scaling arguments to show that when g = 0

∆ ∼ (γ0h
2
0x

2
N/AM)1/3 ∝ t2/9 .

[Assume that ∂C/∂x continues to scale like M/x2
N .]

Find the corresponding result for ∆ when g 6= 0 and ∆2 � γ0/g. For this case find
the time t∗ when ∆ ∼ xN . Explain briefly what happens to the fluid layer when t � t∗?
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4 Two infinite rigid cylinders of radius a are parallel and touching along the z-axis. A
small amount of viscous fluid occupies the cusp-shaped region on one side of the cylinders,
and the wetting properties of the fluid are such that the meniscus is tangent to the cylinders
at the contact points, as shown in the diagram. The width of fluid w(z, t) satisfies w � a
and varies slowly in the axial direction z.

Making appropriate geometrical approximations, show that the cross-sectional area
of fluid is proportional to w3 and that the curvature of the semicircular meniscus is
proportional to w−2. Find the constants of proportionality.

Gravity is negligible and the fluid is drawn (in both directions) along the cusp
between the cylinders by the variation in the capillary pressure. By integrating the flux
over the cross-section, derive the equation

∂w3

∂t
=

γ

7µa

∂

∂z

(
w4 ∂w

∂z

)
for the evolution of w(z, t).

Obtain a similarity solution for the spread of a small fixed volume V of fluid placed
in the cusp at z = 0 and t = 0. In particular, show that the location of one tip of the flow
is given by

zN (t) =
(

8V a

π

)1/4 (
8γt

21µa

)3/8

.

[Note that
∫ π/2

−π/2

sin4 θ dθ =
3π

8
.]

Suppose that gravity is no longer negligible and that the cylinders are now placed,
still touching, with their axes vertical in a large bath of fluid whose free surface is at z = 0.
Find w(z) for large z after the flow has come to rest.

END OF PAPER
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