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PAPER 77

FUNDAMENTALS OF ATMOSPHERE–OCEAN DYNAMICS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

Clarity and explicitness of reasoning will attract more credit
than perfection of computational detail.

(x, y, z) denotes right-handed Cartesian coordinates and (u, v, w) the corresponding
velocity components; t is time; the gravitational acceleration is (0, 0,−g) where g is
a positive constant; ẑ = (0, 0, 1) is a unit vector directed vertically upward.
The fluid is always incompressible. ‘Ideal fluid’ always means that buoyancy
diffusion can be neglected where relevant, as well as viscosity. N denotes the
buoyancy frequency of a stratified fluid.
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1 State what is meant by the Boussinesq approximation for a continuously stratified
ideal fluid, and what is meant by the ‘buoyancy acceleration’. Define the buoyancy
frequency N(z). Write down the nonlinear Boussinesq momentum, mass-continuity and
buoyancy equations for a non-rotating reference frame, carefully explaining the meanings
of the symbols used.

An ideal Boussinesq fluid with constant N undergoes small-amplitude motion in
the region x > 0, in response to the motion of a boundary whose undisturbed position is
the vertical plane x = 0. The velocity of the boundary is prescribed as (with real part
understood)

u(0, z, t) = ε exp (imz − iωt) ,

where ε , m and ω are real positive constants, ε being considered small. Starting
from the equations linearized about rest, derive the dispersion relation for plane-wave
disturbances and use it to find the response to the boundary motion when (i) ω < N ,
and (ii) ω > N . In each case, give expressions for the velocity-field components (u,w)
and for the buoyancy-acceleration anomaly field σ.

Suppose now that the velocity of the boundary is prescribed as (again with real
part understood)

u(0, z, t) = ε u0(z) e−iωt where u0(z) =
∫ ∞

0

{
û0(m)eimz + û∗0(m)e−imz

}
dm

and where 0 < ω < N . Suppose that û0(m) and its complex conjugate û∗0(m) are chosen
such that the real-valued function u0(z) is negligible outside some neighbourhood of z = 0,
i.e., negligible for |z| > H, say. Show that the response has horizontal velocity component

u(x, z, t) = f(Z1) cos(ωt) + g(Z1) sin(ωt) + f(Z2) cos(ωt)− g(Z2) sin(ωt)

where Z1 = z + αx, Z2 = z − αx, and where

α =
(

ω2

N2 − ω2

)1/2

> 0 ,

f(z) = ε Re
∫ ∞

0

û0(m) eimz dm ,

g(z) = ε Im
∫ ∞

0

û0(m) eimz dm .

Assuming some simple shape for u0(z) in |z| < H, sketch the velocity field at the instant
when the boundary is instantaneously flat and moving fastest. Briefly state how that
velocity field differs qualitatively from the velocity field at other instants.

If instead the boundary motion is u(0, z, t) = ε u0(z)T (t), where T (t) is a pulse
(zero outside some small time interval), briefly describe the qualitative appearance of the
response. [Do not solve this problem. Argue qualitatively from your knowledge of the
dispersion properties.]
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2 Write down the fully nonlinear Boussinesq momentum equation for two-dimensional
motion (∂/∂y = 0) of an ideal stably stratified, non-rotating fluid. Using the mass-
continuity equation, derive the y-component of the vorticity equation in the form

∇2ψt + σx = J(ψ, ∇2ψ)

where ψ(x, z, t) is a streamfunction to be specified. Subscripts denote partial differentia-
tion, σ is the departure of the buoyancy acceleration from its background value, and J is
the Jacobian with respect to x and z . Write down the corresponding nonlinear equation
for σ, again using the streamfunction ψ.

Linearize the equations about a background state in which the buoyancy frequency
N is a function of z , and in which there is a steady flow in the positive x direction with
velocity ū(z). Show that disturbances of the form ψ′ = ψ̂(z) exp

(
ik(x− c t)

)
satisfy the

Taylor–Goldstein equation

ψ̂zz +
(
`2 − k2

)
ψ̂ = 0 where `2(z) =

N2(z)
(ū− c)2

− ūzz

(ū− c)
.

What restoring mechanisms are represented by the two terms in the definition of `2(z)?

If the flow is confined between rigid horizontal boundaries z = 0, z = πH, show
that

k2 = I(ψ̂ ; c) where I(ψ̂ ; c) =

∫ πH

0
(`2ψ̂2 − ψ̂2

z ) dz∫ πH

0
ψ̂2dz

.

By using the stationarity property of I(ψ̂ ; c) with respect to ψ̂ [do not prove this ] deduce
that the group velocity cg in the x direction is given by

cg = c +
2k2

∫ πH

0
ψ̂2dz∫ πH

0
{(ū− c)−3N2 + (ū− c)−1`2}ψ̂2dz

.

If N(z) = N0 sin(z/H) and ū(z) = U0 sin(z/H), where N0 and U0 are positive
constants, show that with suitably chosen c the Taylor–Goldstein equation has solutions
of the form ψ̂(z) ∝ sin(nz/H) where n = 1, 2, 3,... . Show that k is always real for at
least one of these values of n. Deduce the values of k2 and cg in that case.

Show that when N and ū are constant the same functions ψ̂(z) can still be
solutions, with the same c, though with different values of k2 to be determined. Is
there still a value of n for which k is always real?

Determine which, if any, of your solutions are also exact solutions of the fully
nonlinear equations.
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3 Derive the shallow-water equations in a non-rotating fluid system with a flat
bottom boundary and layer depth h(x, y, t), carefully explaining the assumptions made.

State how the equations should be modified to allow for rotation of the frame of
reference, with constant angular velocity (0, 0, 1

2f). Derive the vertical component of
the vorticity equation from the momentum equations, and show that Rossby’s potential
vorticity qa/h is an exact material invariant, i.e. that

DH

Dt

(qa
h

)
= 0 , (∗)

where qa = f + ∂v/∂x− ∂u/∂y and where DH/Dt = ∂/∂t+ uH · ∇H , with uH = (u, v, 0)
and ∇H = (∂/∂x, ∂/∂y, 0) .

Using order-of-magnitude arguments and making appropriate assumptions about
small parameters, carefully derive the quasi-geostrophic counterpart to (∗). Express
everything in terms of an appropriate streamfunction ψ(x, y, t), to be specified, and an
appropriate length scale LR. Briefly explain what is meant by (a) ‘potential-vorticity
conservation’ and (b) ‘potential-vorticity inversion’, in this quasi-geostrophic context.

A unidirectional current ū = −∂ψ̄(y)/∂y flows in the positive x direction, and
the corresponding quasi-geostrophic potential vorticity is Q̄(y). Show that a small
disturbance ψ′, Q′ satisfies

Q′t + ū(y)Q′x + Q̄yψ
′
x = 0 , (†)

where subscripts denote partial differentiation.

Now suppose that ū(y) → 0 as |y| → ∞, and that Q̄ has one constant value for all
y > 0 and another, smaller constant value for all y < 0, with a jump discontinuity

[
Q̄

]+
− at

y = 0. Show that ū(y) ∝ exp(−|y|/LR) and find the constant of proportionality, ū(0),
in terms of

[
Q̄

]+
−. If the small disturbance takes the form ψ′ = ψ̂(y) exp

(
ik(x− ct)

)
,

with k and c constant, show that it satisfies (†) if

ψ̂yy − k2ψ̂ − L−2
R ψ̂ = 0 for |y| > 0

and (
ū− c

) [
ψ̂y

]+
− +

[
Q̄

]+
− ψ̂ = 0 at y = 0 .

Find ψ̂(y) and deduce that

c = ū(0)

{
1−

(
L−2

R

k2 + L−2
R

)1/2
}

.

What is the wave propagation mechanism involved? On what property of Q̄(y) does it
depend?
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4 For a Boussinesq, stably stratified ideal fluid on a rotating Earth, derive the
equation governing the quasi-geostrophic potential vorticity

Q = f +
∂2ψ

∂x2
+
∂2ψ

∂y2
+

∂

∂z

(
f2
0

N2

∂ψ

∂z

)
,

taking as your starting point the buoyancy and vorticity equations in the form

Dg

Dt

(
f0
∂ψ

∂z

)
+N2w = 0

and
Dg

Dt

[
∂2ψ

∂x2
+
∂2ψ

∂y2

]
+ β

∂ψ

∂x
= f0

∂w

∂z
,

with f = f0 + βy, in the notation of the lecture notes. Do not give the full order-of-

magnitude analysis, but briefly explain the meaning of the symbols ψ and
Dg

Dt
, showing

why the buoyancy-acceleration anomaly ∝ ∂ψ/∂z. Through what approximate balance
of terms is ψ related to the velocity field? Briefly state the conditions on dimensionless
parameters that tend to favour such balance, and briefly explain why only the vertical
component of the Earth’s rotation rate enters the dynamics. Show that for a nearly-
horizontal lower boundary with small elevation z = b(x, y) the boundary condition on ψ
is

Dg

Dt

(
f0
N2

∂ψ

∂z
+ b

)
= 0 at z = 0 .

An ideal Boussinesq stratified, rotating fluid with constant N and β = 0 (i.e.,
f = f0 = constant) is unbounded above, and bounded below by a rigid boundary whose
shape is given by

z = b(x, y) = ε cos (`y) exp (ikx) with the real part understood,

where ε, k and ` are real constants and ε is small. A steady, unidirectional mean current

ū = U(z) = U0 + Λz ,

with U0 and Λ constant, flows over the boundary undulations. The resulting small-
amplitude disturbance has quasi-geostrophic streamfunction ψ′. Derive the linearized
boundary condition on ψ′ at z = 0. Show that a steady disturbance ψ′ = ψ′(x, y, z)
is possible when KU0 + Λ 6= 0, where K = N(k2 + `2)1/2/f > 0, and find an explicit
expression for ψ′. In the case KU0 + Λ > 0, show by a sketch where the minima and
maxima of the y-component of velocity occur relative to the minima and maxima of the
topography b(x, 0) along the x-axis.

When KU0 + Λ = 0 show that ψ′ must be unsteady, ψ′ = ψ′(x, y, z, t), and find a
solution that satisfies the initial condition ψ′(x, y, z, 0) = 0. Deduce that

∂ψ′

∂t
=

ikεN2U0

Kf
cos (`y) exp(−Kz) exp (ikx)

with the real part understood. Show by another sketch the relative positions, along the
x-axis, of the minima and maxima of the y-component of velocity when U0 = −Λ/K > 0.
Briefly state a physical reason why the disturbance amplitude grows without bound.

END OF PAPER

Paper 77


	Rubric
	1
	2
	3
	4

