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1 Isotropic elastic material has constitutive relation σ = φ(F), where σ is Cauchy
stress and F is the deformation gradient. Prove that σ is coaxial with FFT (or equivalently,
with the left stretch matrix).

If the material is subjected to the simple shear deformation

F =
(

1 γ
0 1

)
(the irrelevant 3-components being disregarded), show that

σ11 − σ22 = γσ12,

regardless of the detailed form of φ.

[Express σij in terms of the principal stresses. There is no need to calculate the principal
stretches; you may or may not find it convenient to do so, in calculating the principal axes
of FFT .]
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2 Incompressible material is reinforced by fibres which are aligned with the X1-axis
in the undeformed configuration, that render the material inextensible in the direction of
the fibres. The material is deformed under the condition of plane strain, so that X → x,
where

x1 = x1(X1, X2),
x2 = x2(X1, X2),
x3 = X3.

Deduce that
x1,1 = cos θ, x2,1 = sin θ,

where θ may depend on X1 and X2 and defines the direction of the fibres in the deformed
configuration. [The notation φ,j = ∂φ

∂Xj
for any function φ(X) is employed.] Show that

(
x1,1 x1,2

x2,1 x2,2

)
=

(
cos θ − sin θ
sin θ cos θ

) (
1 γ
0 1

)
,

where γ = x1,2 cos θ + x2,2 sin θ.

Deduce that
γ,1 = θ,1 and hence that γ = θ + f(X2)

for some function f . By considering dθ/ds along a curve (X1(s), X2(s)), show that

θ = constant along any curve for which
dX2

dX1
= − 1

γ
.

Explain why any such deformation is possible with zero body force in such material,
and how complete determination of the stress requires only the constitutive specification
of the shear stress τ as a function(al) of γ under the condition of simple shear.
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3 A cylinder composed of homogeneous isotropic elastic incompressible material
occupies the domain a2

0 < X2
1 + X2

2 < b20, 0 < X3 < h0 in its unstressed reference
configuration. It has energy function per unit reference volume W (λ1, λ2, λ3), where
λi, i = 1, 2, 3 denote the principal stretches. It is subjected to simultaneous twist and
inflation, which can be viewed as first, the twist X → y:

y1 = X1 cos(αX3)−X2 sin(αX3),
y2 = X1 sin(αX3) +X2 cos(αX3),
y3 = X3,

followed by the inflation y → x:
x1 = f(ρ)y1/ρ,
x2 = f(ρ)y2/ρ,
x3 = y3,

where ρ = (y2
1 + y2

2)1/2 ≡ (X2
1 + X2

2 )1/2 and f(ρ) = (ρ2 + a2 − a2
0)

1/2. Thus, the inner
surface is inflated to radius a, and α is the angle of twist per unit height. The outer curved
surface is traction-free.

Calculate the principal stretches λi(ρ) at one representative location (such as
y1 = ρ, y2 = 0), and deduce an expression for the total energy stored per unit height.
The end couple has moment M about the 3-axis and the internal pressure is p(a). By
considering the global balance of work-rate, show that

M = 2π
∂

∂α

∫ b0

a0

ρW (λ1, λ2, λ3) dρ,

p(a) =
1
a

∂

∂a

∫ b0

a0

ρW (λ1, λ2, λ3) dρ.

Find p(a) explicitly, for the case of neo-Hookean material for which W (λ1, λ2, λ2) =
1
2µ(λ2

1 + λ2
2 + λ2

3).
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4 (a) Write down the integral forms of the balance of energy and the entropy
inequality, in the Lagrangian description, for a body with internal energy per unit
mass U(F, η, ξ), where F is the deformation gradient, η is entropy per unit mass and
ξ represents a collection of internal variables {ξr}. Deduce (under the usual assumptions)
the constitutive relations

PIi = ρ0
∂U

∂FiI
, θ =

∂U

∂η
,

where ρ0 is the mass density in the undeformed configuration, P denotes the nominal
stress tensor, and θ is the temperature. Deduce also that

ρ0θη̇ = ρ0r − qI,I + fr ξ̇r,

where r is heat supply per unit mass, q is the nominal (or Lagrangian) heat flux vector,
and fr = −ρo∂U/∂ξr. Deduce also the inequality

fr ξ̇r −
qIθ,I

θ
> 0.

(b) The specific free energy ψ is defined so that ψ(F, θ, ξ) = U(F, η, ξ) − θη.
Consider the particular case

ψ = ψ(F∗, θ),

with F∗ = FA−1: the internal variables ξr are now replaced by {AJI}, and fr are replaced
by QIJ = −ρo∂ψ/∂AJI . Find P and Q in terms of P∗ = ρ0∂ψ/∂F∗.

For an isothermal process, given the dissipation potential Ω(Q,A), we have
ȦJI = ∂Ω/∂QIJ . Find AJI as a function of time, in terms of the history of Q, in
the case that

Ω(Q,A) =
α

n+ 1
‖Q‖n+1 − 1

τ
AJIQIJ ; ‖Q‖ = (QIJQIJ)1/2,

where α, τ and n are positive constants. Deduce a corresponding expression for the second
Piola–Kirchhoff stress T = PF, as a functional of Q.
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5 Develop the formula
δτ

δt
= τ̇ − Lτ − τLT

for the “upper-convected” rate of Kirchhoff stress τ from the relation τ = FTFT , where
T denotes second Piola–Kirchhoff stress, F is deformation gradient and L is the Eulerian
deformation-rate.

Incompressible “upper-convected Oldroyd” fluid has constitutive relation

σ = −pI + σd;
δσd

δt
+

σd

τ
=

2µ
τ

D + 2µr
δD
δt
,

where D denotes the Eulerian strain-rate and τ , µ and µr are positive constants.. Give
this relation explicitly, in either matrix or component form, for the case of the pure shear
deformation X → x:

x1 = X1 + f(X2, t),
x2 = X2,

x3 = X3

and show that, in the case of steady motion, so that γ̇ ≡ ∂2x1/∂X2∂t is independent of t,

σ11 = −p+ 2(µ− µr)γ̇2τ, σ12 = µγ̇, σ22 = σ33 = −p, σ13 = σ23 = 0. (∗)

Steady Couette flow between differentially-rotating cylinders has the form(
v1
v2

)
≡

(
ẋ1

ẋ2

)
=
v(r)
r

(
−x2

x1

)
, a < r < b,

where r = (x2
1+x

2
2)

1/2. Calculate L for this flow. Explain why, relative to polar coordinates
(r, θ), the associated stress components conform to the relation (∗), with γ̇ suitably defined.
Give σrr, σrθ and σθθ explicitly.

In the absence of any body-force and neglecting inertia, find the pressure explicitly
(up to an unknown constant) in terms of the speed v(a) of the inner boundary, given that
the outer boundary is stationary.

[The equations of motion (neglecting inertia) are

d(r2σrθ)/dr = 0, dσrr/dr + (σrr − σθθ)/r = 0.]
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6 An incompressible non-hardening anisotropic plastic material, in plane strain
deformation, has yield criterion

f(ξ, τ) = 0; ξ =
σ11 − σ22

2
, τ = σ12,

and it conforms to the associated flow law

Dij = λ̇∂f/∂σij .

Expressing the yield criterion in the (ξ, τ) plane in the form ξ = ξ(l), τ = τ(l), where l
denotes arc length, let

dξ/dl = − cos(2φ), dτ/dl = − sin(2φ)

(so that the outward normal to the yield curve makes an angle −2φ to the τ -axis). Define
also σ = (σ11 + σ22)/2. Assuming yield, express the equations of equilibrium in terms of
σ and l.

By considering dF (σ, l)/ds along a curve defined parametrically by (x1(s), x2(s)),
show that F is constant along the curve, provided

(Fσ Fl)
(
x′1 cos(2φ) + x′2 sin(2φ) x′1 sin(2φ)− x′2 cos(2φ)

x′1 x′2

)
= (0 0).

Deduce that
σ − l = constant on an α-line: dx2/dx1 = tanφ,
σ + l = constant on a β-line: dx2/dx1 = − cotφ.

By locally choosing axes so that the x1-axis is tangent to the α-line, deduce from
the flow law that

du− vdφ = 0 along an α-line,
dv + udφ = 0 along a β-line,

where (u, v) denote the components of velocity along the α- and β-lines.

END OF PAPER
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