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1 Let G be a finite group.

(i) Define in terms of series what it means for G to be nilpotent .

(ii) Prove that any p-group (for p a prime) is nilpotent. [You may use without proof
the result that any non-trivial p-group has non-trivial centre.]

(iii) Prove that if K / H 6 G, then [H,G] 6 K if and only if K / G and
H/K 6 Z(G/K).

(iv) Prove that a direct product of two nilpotent groups is also nilpotent.

(v) Define the lower central series

G = Γ1(G) . Γ2(G) . Γ3(G) . · · ·

of G and the upper central series

1 = Z0(G) / Z1(G) / Z2(G) / · · ·

of G. Show that G is nilpotent if and only if Γn(G) = 1 for some n if and only if
Zn(G) = G for some n. Moreover, suppose G is nilpotent and

1 = G0 / G1 / · · · / Gr−1 / Gr = G

is any central series of G; show that for i = 0, . . . , r we have Γr−i+1(G) 6 Gi 6
Zi(G), and deduce that for c > 0 we have Γc+1(G) = 1 if and only if Zc(G) = G.

(vi) Let G be a Sylow 2-subgroup of S7. Give generators for G, and find its lower and
upper central series.

2 Let (G, Ω) be a transitive permutation group, where Ω is a finite set.

(i) Define what it means for a permutation group (G+,Ω+) to be a one-point extension
of (G, Ω).

(ii) Show that the permutation group (D2(p−1),Ω), where p > 5 is prime and Ω =
{1, . . . , p− 1}, has no one-point extension.

(iii) State and prove necessary and sufficient conditions for the existence of a one-point
extension of (G, Ω).

(iv) Show that, for each n > 3, the alternating group An in its natural action satisfies
the conditions in (iii) and therefore has a one-point extension.
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3 Let V be a vector space of dimension n over the field of q elements.

(i) Define what it means for a linear map in GL(V ) to be a transvection. Show that
any transvection may be written as τf,d : v 7→ v + (vf)d for v ∈ V , where f is a
linear functional on V and 0 6= d ∈ ker f . Calculate the product of τf,d and τf ′,d,
and the result of conjugating τf,d by an element g of GL(V ).

Let T denote the set of transvections in GL(V ), and T # = T \ {1}.

(ii) Prove that if n > 2 then T # forms a single conjugacy class in GL(V ), and lies in
SL(V ); prove moreover that if n > 3 then T # forms a single conjugacy class in
SL(V ).

(iii) Prove that T generates SL(V ).

(iv) Prove that if n > 2, and (n, q) 6= (2, 2) or (2, 3), then SL(V ) is perfect.
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(i) Show that if n 6= 6 then OutSn = 1, while |Out S6| 6 2.

(ii) Show that S6 has exactly 6 (synthematic) totals.

Label the totals of S6 as shown:

T1 = {(1 2)(3 4)(5 6), (1 3)(2 5)(4 6), (1 4)(2 6)(3 5), (1 5)(2 4)(3 6), (1 6)(2 3)(4 5)},
T2 = {(1 2)(3 4)(5 6), (1 3)(2 6)(4 5), (1 4)(2 5)(3 6), (1 5)(2 3)(4 6), (1 6)(2 4)(3 5)},
T3 = {(1 2)(3 6)(4 5), (1 3)(2 5)(4 6), (1 4)(2 3)(5 6), (1 5)(2 6)(3 4), (1 6)(2 4)(3 5)},
T4 = {(1 2)(3 6)(4 5), (1 3)(2 4)(5 6), (1 4)(2 6)(3 5), (1 5)(2 3)(4 6), (1 6)(2 5)(3 4)},
T5 = {(1 2)(3 5)(4 6), (1 3)(2 6)(4 5), (1 4)(2 3)(5 6), (1 5)(2 4)(3 6), (1 6)(2 5)(3 4)},
T6 = {(1 2)(3 5)(4 6), (1 3)(2 4)(5 6), (1 4)(2 5)(3 6), (1 5)(2 6)(3 4), (1 6)(2 3)(4 5)}.

The set {T1, . . . , T6} has a natural action of S6 by conjugation; define α ∈ AutS6 \ InnS6

by Ti
π = Tiπα for π ∈ S6 and i = 1, . . . , 6.

(iii) Give the image under α of the transpositions (1 2), (2 3), (3 4), (4 5) and (5 6). By
taking suitable products of these, identify two elements of S6 of order 2 which are
fixed by α; hence find a 5-cycle fixed by α.

(iv) Define what is meant by a Steiner system S(5, 6, 12). Explain how to obtain such
a Steiner system on the set {1, . . . , 6, T1, . . . , T6}.
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