MATHEMATICAL TRIPOS Part III

Monday 11 June 2007 9.00 to 12.00

PAPER 68

STELLAR AND PLANETARY MAGNETIC FIELDS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Consider a Parker wave dynamo model for a mean magnetic field $\mathbf{B} = B(x, t)\mathbf{e}_{\phi} + \nabla \times A(x, t)\mathbf{e}_{\phi}$ in the form

$$\frac{\partial A}{\partial t} = \alpha B + \frac{\partial^2 A}{\partial x^2} - \ell^2 A , \quad \frac{\partial B}{\partial t} = \Omega \frac{\partial A}{\partial x} + \frac{\partial^2 B}{\partial x^2} - \ell^2 B$$

Here Ω is a constant, but $\alpha = \epsilon^{-1} \tilde{\alpha} = \epsilon^{-1} \alpha_0 \sin \omega \tau$, $\tau = t/\epsilon$, ϵ is a small parameter, and α_0 is a constant.

Defining $A = \overline{A} + \tilde{A}(\tau)$, $B = \overline{B} + \epsilon \tilde{B}(\tau)$, where the overbar indicates an average over the fast (τ) timescale, and \tilde{A} , \tilde{B} have zero average, show that the equations for \overline{A} , \overline{B} take the form

$$\frac{\partial \overline{A}}{\partial t} = \overline{\tilde{\alpha}}\overline{\tilde{B}} + \frac{\partial^2 \overline{A}}{\partial x^2} - \ell^2 \overline{A} , \quad \frac{\partial \overline{B}}{\partial t} = \Omega \frac{\partial \overline{A}}{\partial x} + \frac{\partial^2 \overline{B}}{\partial x^2} - \ell^2 \overline{B} ,$$

where $\overline{\tilde{\alpha}\tilde{B}} = -C\partial\overline{B}/\partial x$, and the constant C is to be determined.

Look for solutions of these equations proportional to $e^{ikx+\sigma t}$, and show that growing solutions exist if ΩC is sufficiently large. Give a physical explanation why σ is real, so that the dynamo waves do not travel.

2 Diffusionless waves, describing disturbances to a uniform magnetic field **B** in a fluid rotating with angular velocity $\Omega \hat{\mathbf{z}}$, in the presence of gravity $-g\hat{\mathbf{z}}$ and a uniform temperature gradient $-\beta$ in the z-direction, are described in the Boussinesq limit by the equations

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + 2\Omega \hat{\mathbf{z}} \times \mathbf{u} \right) = -\nabla p + (\mu_0)^{-1} \mathbf{B} \cdot \nabla \mathbf{b} + \alpha \rho \theta g \hat{\mathbf{z}},$$
$$\frac{\partial \theta}{\partial t} = \beta u_z,$$
$$\frac{\partial \mathbf{b}}{\partial t} = \mathbf{B} \cdot \nabla \mathbf{u},$$

together with $\nabla \cdot \mathbf{u} = \nabla \cdot \mathbf{b} = 0$.

(i) Seek solutions in which all the variables are proportional to $\exp(i\mathbf{k}\cdot\mathbf{x} - i\omega t)$, and show, by taking the curl of the momentum equation to eliminate p, and eliminating all variables in favour of u_z , $\zeta = (\nabla \times \mathbf{u})_z$ and θ , or otherwise, that the dispersion relation giving ω in terms of \mathbf{k} and the other parameters takes the form

$$\Delta^2 |\mathbf{k}|^2 - 4\Omega^2 k_z^2 + \frac{g\alpha\beta}{\omega} \Delta(|\mathbf{k}|^2 - k_z^2) = 0, \quad \text{where} \quad \Delta = \omega - \frac{(\mathbf{B} \cdot \mathbf{k})^2}{\mu_0 \rho \omega}$$

(ii) Now suppose that $|\Omega|$ is very large, and that $k_z^2 \sim k_y^2 \sim k_x^2$. Show that the dispersion relation has two types of solution: one in which $|\omega| = O(|\Omega|)$ and another in which $|\omega| \ll |\Omega|$. In the latter case give the leading order approximation to ω , and thus determine conditions on the parameters so that ω is real.

2

3 A model of parity interactions in mean field dynamo models consists of the coupled system for complex amplitudes A_1, B_1 of fields in one hemisphere and A_2, B_2 of fields in the other:

$$\frac{\partial A_1}{\partial t} = \alpha_1 B_1 + \epsilon_1 B_2 - A_1, \quad \frac{\partial B_1}{\partial t} = i\Omega A_1 - \epsilon_2 A_2 - B_1,$$
$$\frac{\partial A_2}{\partial t} = -\alpha_2 B_2 - \epsilon_1 B_1 - A_2, \quad \frac{\partial B_2}{\partial t} = -i\Omega A_2 + \epsilon_2 A_1 - B_2.$$

The parameters ϵ_1, ϵ_2 couple the behaviours in the two hemispheres.

(i) Initially $\alpha_1 = \alpha_2 = \alpha_0$ (const.), so that the system is linear. Show that the equations admit dipole solutions with $A_1 = A_2$, $B_1 = -B_2$, and quadrupole solutions with $A_1 = -A_2$, $B_1 = B_2$. Seek marginally stable solutions in each case in which all the amplitudes are proportional to $\exp(i\omega t)$ for some real ω and find conditions on the parameters that determine which of these two types of solution becomes unstable at the smaller value of $|\alpha_0\Omega|$.

(ii) Now put $\epsilon_2 = 0$ and consider a model of α -quenching in which $\alpha_1 = \alpha_0 - p|B_1|^2$, $\alpha_2 = \alpha_0 - p|B_2|^2$, where p is a positive real constant. Show that dipole and quadrupole solutions proportional to $\exp(i\omega t)$ (where ω is to be determined) still exist if $|\alpha_0 \Omega|$ is sufficiently large, and give an expression for $|B_1|^2 = |B_2|^2$ in this case for each parity. Give also conditions on the parameters that permit solutions with the same simple timedependence for which $|A_1| \neq |A_2|$, $|B_1| \neq |B_2|$. How should such solutions be interpreted physically? [Hint: Choose $\omega = 1$ and set B_1, B_2 to be real.]

4 Write an essay on magnetoconvection. Your essay should cover the effects of an imposed magnetic field on scale selection, the occurrence of oscillatory motion, and subcritical convection at large R_m .

END OF PAPER