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1 State and prove the non-commutative version of Hilbert’s Basis Theorem.

Define a poly-(cyclic or finite) group. Stating clearly any results that you use in
addition to the basis theorem, show that the group algebra ZG is Noetherian whenever G
is a poly-(cyclic or finite) group.

2 Let R be a commutative ring and S a multiplicatively closed subset of R. Define
the localisation RS of R at S using its universal property and sketch the proof that it
exists.

Explain what it means to localise R at a prime ideal P of R. Show that RP , the
localisation of R at P is always a local ring.

Suppose that RP contains no non-trivial nilpotent element for each prime ideal P
of R. Show that R contains no non-trivial nilpotent elements.

Suppose now that RP is an integral domain for each prime ideal P . Must R be an
integral domain? Justify your answer.

3 Show, using Zorn’s Lemma, that every ring R has a simple left R-module.

Define the Jacobson radical J(R) of a ring R. Show that J(R) consists of all
elements x in R such that 1− axb is a unit in R for every a and b in R.

Suppose now that R is commutative and I is an ideal in R. Show that the set
S = 1+I is multiplicatively closed and that the localisation IS of I is contained in J(RS).

4 State and prove the Artin–Wedderburn Theorem.

Deduce that if G is a finite group and S1, . . . , Sk are all the simple CG-modules up
to isomorphism then

k∑
i=1

(dimCSi)2 = |G|.

You may assume that the Jacobson radical of CG is 0.

5 Define an almost commutative C-algebra. Show that if R is an almost commutative
C-algebra then R is Noetherian. Deduce that if g is a finite dimensional C-Lie algebra
then the universal enveloping algebra U(g) is Noetherian.
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6 Let R be a left Noetherian ring and M a finitely generated left R-module. Show
that M has a projective resolution consisting of finitely generated projective modules.

Deduce that if M has projective dimension n < ∞ then Extn
R(M,R) 6= 0.

Find a ring R and an R-module M such that M does not have finite projective
dimension as an R-module.
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