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1 Let U : R → R ∪ {−∞} be a utility function that is finite, twice-differentiable,
strictly increasing and strictly concave on the interval (0,∞) and such that the Inada
conditions hold. Let the conjugate function V : R → R ∪ {∞} be

V (y) = sup
x>0

[U(x)− xy].

Show that V is finite, twice-differentiable, strictly decreasing and strictly convex on (0,∞)
and satisfies

lim
y↓0

V ′(y) = −∞ and lim
y↑∞

V ′(y) = 0.

Now consider a market with cash (that is, zero-interest rate) and d assets whose
prices are given by the d-dimensional process (Sn)n>0. Assume this market is free of
arbitrage. Let

u(x) = sup
π

E
[
U
(
Xπ

N

)]
where Xπ

N is the wealth at time N for an investor using trading strategy π = (πn)N−1
n=0

with initial wealth X0 = x, and let

v(y) = inf
ZN

E[V (yZN )]

where the infimum is taken over all state price densities ZN .

Prove that the inequality

u(x) ≤ inf
y>0

[v(y) + xy]

holds for all x > 0.

What does it mean to say the market is complete? Prove that if the market is
complete then there exists a unique state price density. Compute u(x) for x > 0 as
explicitly as you can in the case when the market is complete and

U(x) =
{

log(x) if x > 0
−∞ if x ≤ 0.
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2 Consider an investor whose wealth (Xt)t≥0 is given by

dXt = θt · (µdt + σdWt)− Ctdt

for constant vector µ ∈ Rd and d × d matrix σ and a d-dimensional Brownian motion
(Wt)t≥0. Write down the Hamilton-Jacobi-Bellman equation associated with the problem
of maximizing

E

(
Uwealth(XT ) +

∫ T

0

Uconsumption(Cs)ds

)
over admissible controls (θt)t∈[0,T ] and (Ct)t∈[0,T ], where the utility functions Uwealth and
Uconsumption are positive, increasing, and concave on the interval (0,∞).

Let V : R+×[0, T ] → R+ be the solution to the Hamilton-Jacobi-Bellman equation.
Prove that

E

(
Uwealth(XT ) +

∫ T

0

Uconsumption(Cs)ds

)
≤ V (X0, 0).

Show that the Hamilton-Jacobi-Bellman equation has a solution of the form
V (x, t) = f(x)g(t) in the case Uwealth(x) = Uconsumption(x) = 2

√
x.

3 Let (Wt)t≥0 be a d-dimensional Brownian motion and λ ∼ N(λ0, V0) be an
independent Gaussian random vector with given mean λ0 ∈ Rd and covariance matrix
V0. Let

Yt = λt + Wt

and (Gt)t≥0 be the filtration generated by (Yt)t≥0.

Prove that the conditional law of λ given Gt is N(λt, Vt) for parameters λt and Vt

to be determined.

Show that the process (Ŵt)t≥0 is a Wiener process adapted to (Gt)t≥0 where

Ŵt = Wt +
∫ t

0

(λ− λs)ds.

Let
Zt = det(I + tV0)

1
2 e−

1
2λt·V −1

t λt+
1
2λ0·V −1

0 λ0 .

Prove that (Zt)t≥0 is a supermartingale for (Gt)t≥0.
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4 Consider a market with cash and d assets whose prices have stochastic dynamics

dSt = diag(St)(µtdt + σtdWt)

for a Rd-valued Wiener process (Wt)t≥0, a bounded Rd-valued process (µt)t≥0, and a
uniformly elliptic d×d matrix-valued process (σt)t≥0, all adapted to the filtration (Ft)t≥0.

Consider an investor who does not consume. What is an admissible trading strategy
for this investor? What is an arbitrage? Prove that this market is free of arbitrage.

Let
Zt = e

− 1
2

∫ t

0
|λs|2ds−

∫ t

0
λs·dWs

where λt = σ−1
t µt. Prove that the process (ZtSt)t≥0 is a local martingale. Prove that

(ZtSt)t≥0 is a true martingale if (σt)t≥0 is bounded.

END OF PAPER
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